Political Science

Breaking the (Benford) Law:

Statistical Fraud Detection in Campaign Finance

Wendy K. Tam CHo and Brian J. GAINES

Benford’s law is seeing increasing use as a diagnostic tool for
isolating pockets of large datasets with irregularities that deserve
closer inspection. Popular and academic accounts of campaign
finance are rife with tales of corruption, but the complete dataset
of transactions for federal campaigns is enormous. Performing
a systematic sweep is extremely arduous; hence, these data are
a natural candidate for initial screening by comparison to Ben-
ford’s distributions.
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Benford’s Law is a fine example of a deeply nonintuitive and
intriguing mathematical result, simple enough to be described
(if not fully explained) even to those without any formal training
in math. The law pertains to the first digits of a collection of
numbers. Most people’s intuition is that, in “ordinary” large sets
of numbers, each integer from 1 through 9 should appear as
the leading digit with roughly equal probability. By contrast,
Benford’s Law reports that the digit 1 leads approximately 30%
of the time and each successive digit is less common, with 9
occurring less than 5% of the time. Strikingly, this pattern holds
for a diverse set of numbers that have no apparent connection to
one another.

Although the law now sports Benford’s name, the astronomer
and mathematician Simon Newcomb was the first to note, in
an 1881 American Journal of Mathematics article, that not all
possible first digits appear with equal frequency in large sets of
“natural numbers.” Newcomb never proffered a theoretical ex-
planation for this phenomena, but his observation, “the law of
probability of the occurrence of numbers is such that all man-
tiss@ of their logarithms are equally probable,” (p. 40) suggests
a convenient expression for the empirical distribution of first
digits.

P(d) =log (#) for defl,...,9}.
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Benford, in turn, set out empirically to test Newcomb’s hy-
pothesis. He collected data from a wide variety of datasets, in-
cluding areas of rivers, population figures, addresses, American
League baseball statistics, atomic weights of elements, and num-
bers appearing in Reader’s Digest articles, among others (Ben-
ford 1938). In his analysis of this varied and large set of num-
bers (consisting of 20,229 individual numbers), there was a sur-
prisingly good fit to the distribution of leading digits first laid
out by Newcomb (1881). Thus, as so often happens, the law
was named not for its discoverer, but for its first popularizer.
Others followed up by confirming the (approximate) fit of still
more sources of numbers, including stock market data, census
statistics, some accounting data, stock market prices, and eBay
bids (Hill 1995; Giles 2007; Ley 1996). About a century after
Newcomb’s discovery, rigorous proof of the law (and derivation
of when and why it holds) were finally developed (Hill 1995).

1. FRAUD AND IRREGULARITY DETECTION BY
BENFORD’S LAW

An interesting application of Benford’s Law has emerged in
recent decades. Whenever first digits should follow Benford’s
Law, it follows that deviations from the known distribution in
data expected to conform signal some type of irregularity, possi-
bly deliberate fraud. Accordingly, Benford’s Law has been put to
use as a simple and effective way to test for fraudulent manipula-
tion of data, as might exist in accounts when embezzlement has
occurred (Nigrini 1999; Durtschi, Hillison, and Pacini 2004). In
this sense, the use of Benford’s Law is in keeping with the philos-
ophy of data mining wherein one searches large volumes of data
for patterns, agnostic about any theory of the data-generating
process. If a data source generally conforms to the law, random
deletion would not induce a worse fit, but if entries are being fal-
sified or there are accidental systematic omissions, violations can
follow. Experimental research has shown that people do a poor
job of replicating known data-generating processes, for instance
by over-supplying modes or under-supplying long runs (Camerer
2003, pp. 134-138). Benford’s law is widely applicable but not
widely known, so it seems very unlikely that those manipulating
numbers would seek to preserve fit to the Benford distribution.
In that sense, it could be an unusually good diagnostic, at least
until it becomes widely known.

An important caveat is that not all numbers follow the law. In
accounting, for example, the first-digit distribution can become
skewed when receipts include a very large number of identical
transactions, reflecting sales of an especially popular item whose
price is constant. In another context, election returns are unlikely
to follow the law in many typical situations, where districts are
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of nearly equal size and the level of competition conspires to
fix most vote totals in a limited range. Taking the top three vote
getters in all 2002 U.S. House elections, almost 38% of the vote
totals had 1 as the leading digit, while 4 was next most common,
at about 12%. On the other hand, vote totals in pre-existing ge-
ographic units that are not artificially constructed subject to an
equal-size constraint (such as counties) conform to Benford’s
Law much better.

Benford’s Law is more “robust” than one might imagine. For
instance, while not all numbers will conform to the Benford
distribution, if distributions are randomly selected and random
samples are taken from each of the distributions, then the fre-
quency of digits of this combined set will converge to Benford’s
distribution even if the separate distributions deviate from Ben-
ford’s distribution (Hill 1995, 1998).

Durtschi, Hillison, and Pacini (2004) provided guidelines on
when to expect Benford compliance.

1. Numbers that result from mathematical combination of
numbers (e.g., quantity X price)

2. Transaction-level data (e.g., disbursements, sales)
3. Large datasets
4. Mean is greater than median and skew is positive

On the flip side, numbers that would not follow Benford’s Law
have the following characteristics.

1. Numbers are assigned (e.g., check numbers, invoice num-
bers)

2. Numbers influenced by human thought (e.g., prices set by
psychological thresholds ($1.99))

3. Accounts with a large number of firm-specific numbers
(e.g., accounts set up to record $100 refunds)

4. Accounts with a built-in minimum or maximum
5. Where no transaction is recorded

These restrictions apply to many data sources, and clearly com-
parison to Benford’s proportions is not always warranted. Al-
though interesting applications of Benford’s Law have emerged,
few have ventured into the world of politics where corruption
of various kinds is commonly alleged. If history is any guide,
there must be myriad instances where one will be astonished by
Benford’s applicability in the political realm. Here, we explore
data on campaign finance, a field rife with allegations of fraud,
cheating, and corruption.

2. FEC FILINGS

Campaign finance regulations are nearly a century old, and the
long history of ever-changing laws and scandals, large and small,
suggests that incentives to slip through loopholes and twist (or
ignore) restrictions are a persistent feature of competitive poli-
tics. The data describing most financial transactions undertaken
by candidates seeking federal office have, in recent years, be-
come fairly easy to access, as the Federal Election Commission

(FEC) has made a practice of posting all reports to public elec-
tronic databases. A simple method of examining FEC data for
signs of fraud is appealing partly because the very reason the
FEC provides these data to the public is to guard against abuses
of the system. By its very existence, the FEC archive enlists all
interested parties in the task of monitoring the flow of money in
federal elections.

In general, however, the FEC data archive would not seem to
be a good prospect for data that follow Benford’s Law because of
numerous laws regulating political contributions. For instance,
individuals have historically been limited to donating a maxi-
mum of $2,000 to federal candidates per election cycle ($1,000
designated for the primary campaign and $1,000 for the general
campaign). A large proportion of all donors give the maximum
amount, making the number 1 even more modal than usual in
the donation records. The data, in other words, violate item 3 in
the checklist above.

2.1 In-Kind Contributions and Joint Fundraising Commit-
tees

One variety of transaction that might escape this tendency to
cluster is the in-kind contribution. In general, individuals are per-
mitted to donate services to candidates without fixing a dollar
amount on their efforts. Thus, volunteers can work as many hours
as they please for a congressional campaign without running
afoul of FEC regulations. However, under some circumstances,
donors must declare a cash value for services or goods donated
to a campaign. When a third party pays the bills on behalf of
a campaign committee (whether the recipient is a celebrity per-
forming for a fee, a commercial landlord collecting rent, etc.),
the individual footing the bill is making an in-kind donation to
the campaign. If an organization puts paid workers at the service
of a campaign, the total wage bill represents an in-kind dona-
tion. All such donations are subject to the same limits as cash
contributions. The key aspect of in-kind donations for present
purposes is that they seem comparatively unlikely to cluster at
the maximum permitted value, since they are often computed
according to retail prices or pre-set wages and hours worked.
In addition, the limits mentioned above apply to donations to
candidate committees, but not to donations of so-called “soft”
money to party committees. Candidates generally accept dona-
tions through campaign committees, however, they can also set
up “Joint Fundraising” committees (JFC) that raise both reg-
ulated (“hard money”) contributions and soft money simulta-
neously. The JFCs, in turn, redistribute the money, generally
by passing on the maximum permitted amount to the candidate
committee as hard money, and then channeling the balance to a
party committee as soft money. Hence, the category of in-kind
contributions to joint fundraising committees represents an un-
usual subset of the FEC domain, since neither contribution limits
nor round-value focal points constrain the data strongly.

One high-profile scandal involving alleged fraud in campaign
accounting involved Hillary Clinton, and revolved around in-
kind donations to a JFC. In January 2005, David Rosen, the Di-
rector of Finance for Clinton’s 2000 Senatorial campaign, was
indicted on four counts of causing false campaign finance re-
ports to be filed with the FEC. Prosecutors alleged that Rosen
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Table 1.

Committee-to-committee in-kind contributions (first digits), 1994-2004.

Newcomb  Benford data 1994 1996 1998 2000 2002 2004
1 30.1 28.9 329 24.4 27.4 26.4 24.9 233
2 17.6 19.5 18.7 21.7 18.5 21.1 22.6 21.1
3 12.5 12.7 13.6 15.8 153 11.1 10.7 8.5
4 9.7 9.1 79 9.6 10.3 10.7 11.6 11.7
5 79 75 8.9 10.2 11.8 10.1 10.5 9.5
6 6.7 6.4 8.3 6.3 59 4.3 4.3 4.2
7 5.8 5.4 4.1 4.8 3.7 6.4 34 3.7
8 5.1 5.5 2.4 32 39 2.4 3.0 4.0
9 4.6 5.1 32 4.0 33 7.5 9.0 14.1
N 20,229 9,632 11,108 9,694 10,771 10,348 8,396
x2 85.1 349 507 431 4,823 1,111 2,181
vy 29 5.7 10.1 8.1 5.5 7.8 8.7
d* 0.024 0.052 0.081  0.061 0.071 0.097  0.131

repeatedly and knowingly under-reported in-kind contributions
to New York Senate 2000, Clinton’s JFC (Tonken 2004). The
main incentive for such obfuscation would have been that FEC
rules at the time allowed candidates to pay for fundraising events
with soft money provided that the costs were no more than 40%
of the total hard money raised. Thus, minimizing costs allowed
the Clinton campaign to preserve precious hard money, which
could be used for direct campaign advertisements in the bruis-
ing and expensive air war that lay ahead. Rosen faced up to five
years in prison, but was acquitted. The defense, accepted by the
jury, did not deny fraud and shoddy accounting, but blamed oth-
ers, claiming that Rosen was unaware of the shenanigans (Ryan
2005).

Unfortunately, although the FEC is diligent about collecting
and posting candidate reports, the data are not coded in such a
way that one can easily identify in-kind donations, let alone in-
kind donations to JFCs. For obscure reasons, the only in-kinds
that are distinctly marked are those made from one committee
(as opposed to an individual) to another committee. The reasons
money is shuffled between committees are, again, somewhat
arcane, and related to the fact that campaign finance regulations
are: (a) ever-changing, as they seem almost without exception
to produce some unintended consequences; (b) constrained in
several manners by a tangled jurisprudence incorporating, for
instance, first-amendment protection of political speech; and (c)
created by plainly not disinterested actors, namely incumbent
politicians.

3. ANALYSIS OF IN-KIND CONTRIBUTIONS

The data reported in Table 1 are the first digit relative fre-
quencies (as percentages) for all committee-to-committee, in-
kind contributions cataloged by the FEC for each of the last six
election cycles. For comparison, the second column shows the
values for the 20 datasets Benford discussed in his 1938 paper.

A casual perusal reveals that fit to the Newcomb-Benford theo-
retical distribution for the FEC data seems to have gotten worse
over time. Figure 1 is a graphical depiction of the data’s con-
formity. In each plot, the expected “Benford’s law” values are
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plotted by the solid line. The first plot covers the elections of
1994, 1996, and 1998. The second plot pertains to contributions
from the 2000, 2002, and 2004 election cycles. On average, the
fit to Benford seems to have become poorer in the more recent
elections. The figure makes clear, for instance, that since 2000,
each election has seen an increasing surplus of leading 9s. Lead-
ing 1s, by contrast, are too few in number, and in decline over
these three elections.

To make these comparisons more precise, one can compute
formal test statistics. One alternative is to conduct a x 2 goodness-
of-fit test. The null hypothesis is that the data follow the Benford
distribution, shown in the column labeled “Newcomb’ in Table 1.
The test statistic is

k 2
2 (0; — E)
X —Z—Ei :

i=1

where O; and E; are the observed and expected frequencies for
digit i, respectively. The test statistic follows a x 2 distribution
with 8 degrees of freedom, so the null hypothesis is rejected if
x2 > Xo%,s’ where « is the level of significance. As the table

shows, for every year we analyze, the x 2 test produces huge val-
ues that lead one to reject the null hypothesis at any conceivable
significance level (the critical value for the 0.001-level here is
26). Indeed, one can reject the null hypothesis for the very data
that Benford used to demonstrate the accuracy of Newcomb’s
law. Of course, x 2 tests are very sensitive to sample size, having
enormous power for large N, so that even quite small differ-
ences will be statistically significant. This test appears to be too
rigid to assess goodness-of-fit well, especially since the Benford
proportions do not represent a true distribution that one would
expect to occur in the limit (Ley 1996; Giles 2007).

A second alternative is a modified Kolmogorov-Smirnov test
statistic (Kuiper 1962),

Vv = Dy + Dy,
where

Dy

[Fn(x) = Fo(x)],

sup
—o0<X <00



o _J
<
— Benford
-~ 1994
| ---- 1996
3 . --- 1998
()
o
pu]
(5]
o
o |
o -
T T T T T T T T T
1 2 3 4 5 6 7 8 9
First Digit
Figure 1.
and
Dy = sup [Fo(x)— Fy(x)].
—00<X <00

Giles (2007), citing Stephens (1970), favors a modified form of
the Vy test statistic, V;‘\}, which is independent of sample size
and has critical value of 2.001 for « = 0.001. The table shows
that our values for Vlf,, like the X2 values, lead us to reject con-
formity with Benford’s law for all of our FEC datasets. Again,
though, we would also reject the null hypothesis for Benford’s
data on the basis of this test, suggesting that perhaps it is too
rigid. The very naming of the “law” after Benford reflects the
common understanding that he demonstrated that Newcomb’s
idea is widely applicable to real-world data, not the contrary.
Since no one has suggested that Benford’s Law holds asymptot-
ically, a preferable statistic would be less sensitive to sample size
than the X2 statistic. Arguably, it is also not a natural context for
computing p values.

One other possible measure of fit, then, not connected to a
hypothesis-testing framework and insensitive to sample size, is
based on Euclidean distance from Benford’s distribution in the
nine-dimensional space occupied by any first-digit vector. Here,
let

where p; and b; are the proportions of observations having i as
the leading digit and expected by Benford’s distribution, respec-
tively. Because these vectors are compositional, we can com-
pute the maximum possible distance, associated with a distribu-
tion where the first digit expected to occur least often (9) is the
only one observed. Division by this maximum value converts
the distance-from-Benford value, d, for any given empirical dis-
tribution to a score bounded by O and 1. The bottom row of
the table shows these scores (labeled “d*”). Again, the last two
elections stand out as exhibiting somewhat worse fit than their
earlier counterparts, and the Benford data provide a rough sense
for what constitutes a realistic, small value.

40
|
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Percentage
20 30
|

10

First Digit

In-kind contributions and Benford’s Law.

None of these figures, of course, pinpoint why the data describ-
ing in-kind contributions for the latter elections have departed
from the prior pattern of loose fit to Benford’s law. This analysis
merely identifies the years as anomalous and worthy of further
inspection. The origin of the poor fit to Benford’s law could be
bad record keeping, new practices in donations that correspond
to the checklist of Benford inapplicability, changes associated
with the “McCain-Feingold” Bipartisan Campaign Reform Act,
or increasing incidence of actual fraud or other irregularity in
financial transactions.

To explore further when and how discrepancies between actual
data and the theory occur, one can examine subsets of the data.
Indeed, there is an especially strong rationale for re-examining
the data by size of contribution. Thus far we have followed com-
mon practice by neglecting a point Benford emphasized in his
1938 article, that the Newcomb distribution is a “law for large
numbers” (p. 554). Benford derived alternative distributions for
numbers having only one-, two-, or three- digits, since the “lim-
iting order” routinely described as “Benford’s distribution” turns
out to be a crude approximation for such small numbers.

In Table 2 we disaggregate the FEC data according to the size
of the contribution, and we report Benford’s theoretical distri-
butions for one-, two-, and three- digit numbers, to which the
FEC data can be compared. (For each of these distributions, we
also report their standardized distance from the familiar, large-N
Benford distribution in the d* column.) It is evident, and not ter-
ribly surprising, that fit is always worse in subsets (as compared
with the totals in Table 1). Aggregation plays no small part in the
Benford tendency. The other main pattern is that fit is generally
poor for the one-digit numbers and the four-or-more-digit num-
bers, and better for the intermediate categories. A striking oddity
is that 2000 bears little resemblance to the other election years
in regard to the smallest contributions—it has by far the best fit
to the one-digit theory because of a large number of (inherently
suspicious) $1 transactions. A second interesting trait, worthy of
further investigation, is that the increase in leading 9s over the
last three election cycles is largely due to $90-$99 contributions.
Although how best to generalize the distance score to acknowl-
edge the fact that the predicted values are now a 9 x 4 matrix
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Table 2.

In-kind contributions by contribution size.

1 2 3 5 6 7 8 9 N d*
Benford (i < 10) 0.393 0.258 0.133 0.082 0.053 0.036 0.024 0.015 0.007 0.140
Benford (9 < i < 100) 0318 0.179 0.124  0.095 0.076  0.064 0.054 0.047 0.042 0.018
Benford (99 < i < 1000) 0303 0.176  0.125 0.097 0.079 0.067 0.058 0.051 0.045 0.002
Newcomb-Benford (i > 999) 0.301 0.176  0.125 0.097 0.079 0.067 0.058 0.051 0.046
1994
$1-$9 0.090 0.067 0.073 0.060 0.062 0502 0.054 0.034 0.058 536 0.535
$10-$99 0349 0.206 0.126  0.083 0.083 0.047 0.051 0.027 0.027 3,493 0.051
$100-$999 0305 0.187 0.153 0.077 0.104 0.075 0.038 0.023 0.038 4,902 0.055
$1000+ 0.579 0.190 0.108 0.081 0.027 0.000 0.001 0.011 0.001 701 0.294
1996
$1-$9 0.057 0.116 0210 0.099 0.080 0.080 0.080 0.077 0.202 352 0.389
$10-$99 0.159 0.218 0.154 0.096 0.109 0.088 0.085 0.048 0.043 3,875 0.166
$100-$999 0259 0226 0.172 0.090 0.108 0.056 0.028 0.024 0.036 5925 0.093
$1000+ 0.558 0.191 0.073 0.127 0.044 0.002 0.005 0.000 0.000 956  0.278
1998
$1-$9 0.101  0.084 0.054 0.027 0.104 0.191 0.054 0.289 0.097 298 0.437
$10-$99 0.188 0.144 0.192 0.105 0.110 0.100 0.060 0.046 0.054 3,305 0.153
$100-$999 0282 0.192 0.158 0.113 0.141 0.037 0.029 0.027 0.022 5,017 0.090
$1000+ 0.548 0306 0.039 0.065 0.039 0.001 0.001 0.000 0.000 1,074 0.305
2000
$1-$9 0427 0.036 0.056 0.021 0.053 0.167 0.062 0.058 0.120 468  0.274
$10-$99 0.184 0.213 0.101 0.077 0.105 0.045 0.101 0.031 0.144 4,297 0.176
$100-$999 0249 0.203 0.142 0.154 0.117 0.040 0.047 0.021 0.027 4,855 0.100
$1000+ 0.560 0.308 0.045 0.050 0.036 0.000 0.001 0.000 0.000 1,151 0.316
2002
$1-$9 0.034 0.073 0.069 0.019 0.203 0.165 0.119 0.111 0.207 261  0.466
$10-$99 0.195 0206 0.124 0.078 0.097 0.051 0.038 0.030 0.181 4,356 0.183
$100-$999 0250 0.234 0.107 0.172 0.118 0.038 0.032 0.031 0.018 4,760 0.123
$1000+ 0.543 0316 0.040 0.041 0.057 0.000 0.000 0.001 0.002 971  0.307
2004
$1-$9 0.035 0.031 0.040 0.035 0256 0.172 0.154 0.181 0.097 227 0.495
$10-$99 0.165 0.155 0.089 0.071 0.055 0.052 0.041 0.055 0316 3,345 0.305
$100-$999 0238 0.231 0.095 0.180 0.129 0.035 0.037 0.027 0.028 3,836 0.136
$1000+ 0490 0359 0.040 0.043 0.064 0.002 0.000 0.002 0.000 988  0.292

Note: i denotes contribution amounts in whole dollars.

rather than a 9-tuple is not self-evident, if one simply computes
weighted averages of the distance for each subset, then, once
again, the 2004 data seem to offer markedly worse conformity
to Benford’s distributions (the values are, in order, from 1994 to
2004: 0.097; 0.144; 0.146; 0.161; 0.174; 0.231). A Cox-Stuart
test for trend using all 24 d* values indicates that the last three
years, when blocked by level of contribution, have seen signifi-
cantly worse fit to Benford (p < 0.001).

4. CONCLUSION

Benford’s Law is a powerful, objective, simple, and effective
tool for identifying anomalies in data. It is especially valuable
for large datasets on deception-prone activities. Comparison of
empirical data to these theoretical distributions will not usu-
ally locate a “smoking gun,” but it can be a good diagnostic for
where to go sniffing for that gun. This is how Benford’s Law is
currently used in contexts such as tax auditing (Nigrini 1996).
The ability to ferret through millions of tax returns—or cam-
paign contributions—quickly to identify a suspicious set clearly
enhances efficiency. Moreover, Benford’s Law is applicable to
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surprisingly large and diverse classes of data. Recent applica-
tions include self-reported toxic emmissions data (de Marchi
and Hamilton 2006), quality of survey data (Judge and Schechter
2006), and election returns (Mebane 2006).

Of course, first-digit laws are not universally applicable, so
other tools are necessary for particular applications. Where
cheating is a temptation for test administrators, runs tests and
applications of simple combinatorics have proven useful (Ja-
cob and Levitt 2003). In campaign finance, because most FEC
records seem likely to violate Benford because of predictable
modes caused by regulation, data mining techniques are help-
ful to screen for suspicious subsets. Benford’s Law is only one
of many tools for identifying patterns. In its favor, Benford’s
Law concerns a pattern in the data known at the outset, making
it unusually easy to implement. Grendar, Judge, and Schechter
(2007) have proposed alternative formulations for first signifi-
cant digit distributions, and set forth a theoretical model wherein
the Benford distribution is regarded as one member of a family
of distributions of first-significant-digit occurrence rates. Their
framework allows a considerable broadening of the Benford test.

One might also broaden the scope of Benford in the FEC data



archive, for instance, by partitioning the in-kind data by state,
recipient committee, party of the candidates, and so on. Benford
also derived a nonuniform distribution for second digits, and
the first- and second-digit distributions are not independent, so
comparison of data to their joint distribution might prove fruitful
in some contexts. In the end, all of these tests are primarily
helpful in identifying cases that warrant closer inspection, and
their main attraction is speed and efficiency. Organizations like
the FEC, that post very large quantities of data, should consider
implementing tests of this kind as a routine procedure, to ensure
the quality of their data, which may be compromised by any
number of recording issues unrelated to fraud.

The preliminary analysis reported above does not constitute
proof of illegality, but we have identified pockets of data that
merit more careful inspection. We have suggested that the most
suitable subset of the FEC archive for first-digit checks is prob-
ably in-kind contribution to JFCs, a large class of transactions
that, unfortunately, is not presently identifiable. We look forward
to better data collection and processing practices by the FEC to
facilitate more careful scrutiny of these important data.

[Received April 2006. Revised April 2007.]
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