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a b s t r a c t

Benford’s Law can be seen as one of the many first significant digit (FSD) distributions
in a family of monotonically decreasing distributions. We examine the interrelationship
between Benford and other monotonically decreasing distributions such as those arising
from Stigler, Zipf, and the power laws. We examine the theoretical basis of the Stigler
distribution and extend his reasoning by incorporating FSD first-moment information into
information-theoretic methods. We present information-theoretic methods as a way to
describe, connect, and unify these related distributions and thereby extend the reach of
Benford’s Law and FSD research more generally.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In 1881, astronomer and mathematician Simon Newcomb noticed that the first several pages of logarithm tables were
more worn than subsequent pages. This observation led him to the counter-intuitive conjecture that, in a ‘‘natural’’ data
set, the digit ‘‘1’’ would occur most frequently and ‘‘9’’ would occur least frequently (Newcomb, 1881). Newcomb stated,
‘‘the law of probability of the occurrence of numbers is such that all mantissæ of their logarithms are equally probable,’’ and
suggested the following expression for the empirical distribution of first significant digits (FSD):

P(d) = log10

(
1+ d
d

)
for d = 1, . . . , 9, (1)

where P(d) is the relative frequency of the digit d as a first significant digit. The resulting monotonically decreasing relative
frequency values for d = 1, 2, . . . , 9 are (0.301, 0.176, 0.125, 0.097, 0.079, 0.067, 0.058, 0.051, 0.046). Perhaps because
Newcomb did not proffer a theoretical explanation or an empirical verification of the phenomenon, his conjecture did not
garner much immediate attention.

1.1. Benford’s Law

Fifty-seven years later, Frank Benford set out to empirically verify Newcomb’s hypothesis by demonstrating that 20,229
observations compiled from seemingly unrelated sets of numbers provided a good fit to the distribution first laid out by
Newcomb (Benford, 1938). These diverse data sets included the populations of cities, street addresses, American League
baseball statistics, numbers appearing in Reader’s Digest, and the area of rivers, among others. Benford’s empirical display of
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this FSD pattern led to the naming the phenomenon as ‘‘Benford’s Law,’’ after its popularizer rather than its discoverer.
Subsequently, Benford’s Law has been shown to approximately apply to a large number of other data sets, including
electricity usage, word frequency, ebaY bids, census statistics, and campaign donations (Raimi, 1976; Zipf, 1949; Hill, 1995;
Giles, forthcoming; Cho and Gaines, 2007). Fascinatingly, Pinkham (1961) has additionally demonstrated that Benford’s Law
is scale invariant—whether the unit is dollars, yen, inches, meters, or hectares has no bearing on the fit to Benford’s Law.
These findings are intriguing and have ledmany towonder why numbersmight follow Benford’s Law. Benford suggested

that the law held when data came from a mixture of uniform distributions that were more likely to have relatively small
upper bounds.1 Raimi (1976) posited that Benford’s mixture scheme is arbitrary and approximate because it implies that
a variety of other ‘‘laws’’ could also be created by mixing different distributions, causing one to wonder why mixtures
of uniform distributions would be especially relevant to describing distributions of first significant digits. George Stigler,
a future Nobel Laureate in Economics, claimed that the specific mixture of uniform distributions with non-uniformly
distributed maximum values is, minimally, an inconsistency. This observation led Stigler (1945) to propose an alternative
FSD distribution that was less skewed toward the lower digits and was derived without the use of such assumptions.
Indeed, despite the empirical verification that a large number of unrelated data sets follow Benford’s Law, the literature

has also recognized thatmany data sets deviate from the ‘‘law of anomalous numbers’’ (Durtschi et al., 2004). Curiously, even
when the FSDs in data sets deviate from the logarithmic pattern, the relative frequency of digits appear to still favor the lower
digits and declines monotonically in a manner akin to Benford’s Law, implying perhaps that a generalized form of Benford’s
Lawmight bemorewidely applicable. Recently, power law and information-theoreticmethods have been proposed as being
more intuitively appealing and generalizableways of determining similar FSD distributions (Grendar et al., 2006). Pietronero
et al. (2001) suggest that Benford’s Law is a special case of a power law.
The purpose of this paper is to review the basis of Stigler’s FSD solution and to present a data-based, information-theoretic

approach to recovering Stigler-like FSD distributions. The structure of the paper is as follows. Section 2 describes Stigler’s
proposed alternative approach and compares it to that of Benford. Section 3 introduces the power law concept and uses it to
exhibit the fact that the relative frequency of a first significant digit decays as a power law of its rank in terms of appearance.
Section 4 demonstrates how Cressie–Readminimum divergence-distance measures create Benford-like distributions based
on the first moment of given data. Finally, Section 5 discusses implications for the use of these scale-invariant methods.

2. Stigler’s FSD concept

Stigler (1945) reviewed the Newcomb–Benford FSD phenomenon and proposed that the average relative frequency of a
leading significant digit, d, is

Fd =
d ln(d)− (d+ 1) ln(d+ 1)+

(
1+ 10

9 ln(10)
)

9
. (2)

He arrived at this conclusion by first assuming that the largest entry in the given statistical table is equally likely to begin
with d = 1, 2, . . . , 9, and that all other entries in the table are randomly selected from the uniform distribution of numbers
smaller than the largest entry. Defining the rth cycle of numbers as being the interval [10r , 10r+1] for some real number
r , Stigler finds the distribution of FSDs for the highest entry in a cycle of numbers from the table and then averages the
probabilities over all highest entries. Since table entries are from a uniform distribution, any digit d should have, at the end
of the (r−1)st cycle, occurred (10r−1)/9 times as an FSD out of 10r−1 numbers, approximately 10r/9 and 10r , respectively.
For example, at the end of the first cycle, i.e., [10,100), the digit ‘‘2’’ has occurred as an FSD (102 − 1)/9 = 11 times out of
102−1 = 99 numbers, including those from all previous cycles. After the (r−1)st cycle, d does not appear as an FSD for the
next (d−1)10r numbers, e.g., ‘‘2’’ does not arise as an FSD in the interval [102, 102+ (2−1)(102)) = [100, 200). Following
this logic, we see that

pi =
di ln di − (di + 1) ln(di + 1)+m

9
, (3)

wherem is defined as

m =

9∑
i=1
i2 ln(di)− di(di + 1) ln(di + 1)

9−
9∑
i=1
di

. (4)

The resulting frequencies from Stigler’s derivation are presented in Table 1.2 The frequencies from Benford’s Law are
presented for comparison. While the relative frequencies differ, the sets of frequencies are similar in their monotonically

1 Rodriguez (2003) noted that Benford’s Law can be obtained without mixtures of distributions, but is obtainable from data drawn from a lognormal
distribution with a relatively high variance parameter.
2 While there have been many empirical examples of Benford’s Law, there have been relatively few empirical examples of Stigler’s Law. One exception
derives from Ley (1996), who presented stock market data as an example of Benford’s Law at work. Rodriguez (2004) later showed that Stigler’s Law
provided a better fit to these data.
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Table 1
Comparison of the Benford and Stigler distributions.

FSD Stigler’s Law Benford’s Law

1 0.241 0.301
2 0.183 0.176
3 0.146 0.125
4 0.117 0.097
5 0.095 0.079
6 0.077 0.067
7 0.061 0.058
8 0.047 0.051
9 0.034 0.046

decreasing pattern. Because no logarithmic FSD distribution holds generally for all natural data sets, Stigler’s Law and
Benford’s Law might be viewed as members of a family of monotonically decreasing distributions of FSDs.
Stigler claims that the difference between his alternative and Benford’s Law arises from the hidden assumptions Benford

made about the relative frequencies of the largest numbers in statistical tables. Benford assumed that smaller numbers
with corresponding smaller FSDs occurred more often as bounds for statistical tables. In particular, given a mixture of
uniform distributions U[0, b), the density of the upper bound b is assumed to be proportional to 1b . Stigler argued that this
assumptionwas unnecessary in deriving a logarithmic rule, since it neither expanded the scope of the law nor contributed to
the theoretical basis for modeling a distribution of first significant digits. In contrast, Stigler’s assumption is that the largest
entries in statistical tables were equally likely to begin with d = 1, 2, . . . , 9 (Stigler, 1945).3

3. Connections to the power law and Zipf’s Law

3.1. Power law

In Section 1, we noted the suggested role of scale invariance that underlies the uneven distributions in data outcomes
in economics, linguistics, and many other natural phenomena. Scale invariance occurs if the outcome does not change
when either the underlying data distribution, Prob(D) = P(D), or its FSD counterpart, P(d), is multiplied by a constant s
(Mandelbrot, 1982). Pietronero et al. (2001) note that scale invariance leads to the functional relation

P(sD) = P(D∗) = K(p)P(D), (5)

and that the general solution to (5) has the power law nature

P(D∗) = P(D∗−α) = s−αD−α, (6)

where the exponent α is a constant.
For these types of distributions, we can, in Stigler-like fashion, compute the probability of the first digit by noting that

we have the same (uniform) relative probability for the integers d = 1, 2, . . . , 9, for each cycle. Following Pietronero et al.
(2001), for α 6= 1,

P(D∗) =
∫ d+1

d
D−α dD =

1
1− α

[(d+ 1)1−α − d1−α]. (7)

For α = 1,

P(D∗) =
∫ d+1

d
D−1 dD =

∫ d+1

d
d (logD) = log

(
d+ 1
d

)
. (8)

This expresses Benford’s Law as determined from the underlying data distribution. Consequently, in a power law context
when α = 1, we have a uniform FSD in logarithmic space. For values of α > 1, the FSD distribution is more tilted than
Benford so that the first digit 1 is even more frequent. For values of α < 1, the FSD distribution tends toward a uniform FSD
distribution. The case of α = 1 seems to appear frequently in nature, as evidenced by the large number of data sets that
exhibit the Benford pattern. Clearly, however, αmay take on other values as well, and so, this is one way in which wemight
view this family of power laws as a generalized Benford law (Pietronero et al., 2001).

3.2. Zipf’s Law

Zipf’s Law characterizes a rank order statistic and bears similarities to Benford’s Law, most notably in that now familiar
monotonically decreasing distribution of relative frequencies. In addition, Zipf’s Law is scale invariant and is applicable to

3 An alternative method of deriving Stigler’s FSD rule based on the idea of mixing uniform distributions is given in Rodriguez (2004) and is provided in
the Appendix for interested readers.
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a large range of phenomena, including income distributions, city sizes, and word frequency (Zipf, 1949; Raimi, 1976). For
instance, Zipf’s Law links word frequency,W , to its rank order k,

W (k) =
A
k
, (9)

where A is the frequency of the most common word (i.e. the one with rank k = 1). The second most common or frequent
wordwould have rank k = 2 and frequencyW (2) = A/2, and so forth so that themost frequent word occurs approximately
twice as often as the secondmost frequent word, which occurs twice as often as the fourth most frequent word (Zipf, 1949).
Following Pietronero et al. (2001), consider the rank order properties of a set of N numbers extracted from a general

distribution, P(N) ∼ Nα . Let Nmax be the largest value in the set N , a finite value that corresponds to the rank k = 1. The
rank k for any number in the set is then

k = N

∫ Nmax

N(k)
P(N) dN ∼ N(k)1−α. (10)

Inverting (10) gives us

N(k) ∼ k
1
1−α , (11)

which highlights a link between Benford’s Law and Zipf’s Law. Benford’s Law (α = 1) does not lead to a Zipf-type law be-
cause Nmax diverges. However, any power law distribution where α > 1 leads to a generalized Zipf’s Law with exponent
1/(1− α), and Benford’s Law can be seen as a part of the family of power laws.

4. Problem reformulation and solution

In the previous section, we discussed the Benford, Stigler, power, and Zipf’s Law approaches to determining the
distribution of FSDs and investigated their interrelationship. We now discuss how information-theoretic methods produce
similar distributions, and highlight their unique ability to easily adapt the specific distribution to moment information from
any particular data set. Since phenomena often have unique traits, a distribution that is adaptable to data peculiarities is
desirable if such individual idiosyncrasies might affect the particularities of the monotonically decreasing distribution.
In the context of recovering the FSD distribution from a sequence of positive real numbers, assume for the discrete

random variable di for i = 1, 2, . . . , 9, that at each trial, one of nine digits is observed with probability pi. Suppose after
n trials, we are given first-moment information in the form of the average value of the FSD:

9∑
j=1

djpj = d̄. (12)

Assuming that the only information that exists is this first-moment information, our inverse problem consists of identifying
an FSD distribution that reflects the best predictions of the unknown probabilities, p1, p2, . . . , p9. It is readily apparent that
there is one data point and nine unknowns, resulting in an ill-posed inverse problem where there exist an infinite number
of possible discrete probability distributions with d̄ ∈ [1, 9]. Based only on the mean,

∑9
j=1 djpj = d̄, and two constraints

on probabilities,
∑9
j=1 pj = 1, and 0 ≤ pj ≤ 1, the problem does not have a unique solution. A function must be inferred

from insufficient information when only a feasible set of solutions is specified. In such a situation, it is useful to have an
approach that allows the investigator to adapt sample-based information recovery methods without having to commit
the FSD function to a particular parametric family of probability densities. The goal is to reduce the infinite dimensional
non-parametric problem to one that is finite dimensional. Ideally, we do so without imposing more assumptions than are
necessary.

4.1. An information-theoretic approach

One way to solve this ill-posed inverse problem for the unknown pj without making a large number of assumptions or
introducing additional information is to formulate it as an extremum problem. This type of extremum problem is in many
ways analogous to allocating probabilities in a contingency tablewhere pj and qj are, respectively, the observed and expected
probabilities of a given event. A solution is achieved by minimizing the divergence between the two sets of probabilities.
That is, we are optimizing a goodness-of-fit (pseudo-distancemeasure) criterion subject to data-moment constraint(s). One
attractive set of divergencemeasures is the Cressie–Read (CR) power divergence family of statistics (Cressie and Read, 1984;
Read and Cressie, 1988; Baggerly, 1998):

I(p, q, γ ) =
1

γ (1+ γ )

9∑
j=1

(
pj

[(
pj
qj

)γ
− 1

])
, (13)

where γ is an arbitrary and unspecified parameter.
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In the context of recovering the unknown FSD distribution, use of the CR criterion (13) suggests we seek, given q, a
solution to the following extremum problem:

p̂ = argmin
p

[
I(p, q, γ ) |

9∑
j=1

pjdj = d̄,
9∑
j=1

pj = 1, pj ≥ 0

]
. (14)

In the limit, as γ ranges from −1 to 1, two main variants of I(p, q, γ ) have received explicit attention in the literature
(see Mittelhammer et al. (2000)). Assuming for expository purposes that the reference distribution is discrete uniform,
i.e. qj = 1/9 ∀ j, then I(p, q, γ ) converges to an estimation criterion equivalent to the Owen (2001) empirical likelihood
(EL) criterion

∑9
j=1 ln(pj), when γ → −1. The EL criterion assigns discrete mass across the nine possible FSD outcomes,

and in the sense of objective function analogies, it is closest to the classical maximum-likelihood approach. In fact, it results
in a maximum non-parametric likelihood alternative. The second prominent case for the CR statistic corresponds to letting
γ → 0 and leads to the criterion−

∑9
j=1 pj ln(pj), which is the maximum entropy (ME) or the Shannon (1948) and Jaynes

(1957a,b) entropy function.
The ME criterion distance measure is equivalent to the Kullback–Leibler (KL) information criterion (Kullback, 1959), and

finds the feasible p̂ that define the minimum value of all possible expected log-likelihood ratios consistent with, in our
case, the FSD mean. Solutions for these distance measures cannot be written in closed form, but are instead, determined
numerically through optimization algorithms.

4.2. Maximum entropy formulation

If we use the CR (γ = 0) criterion for the first digit case, we would select the ME probabilities that maximize

H(p) = −
9∑
j=1

pj ln(pj), (15)

subject to the mean d̄, where

d̄ =
9∑
j=1

pjdj, (16)

and the condition that the probabilities must sum to one

9∑
j=1

pj = 1. (17)

The Lagrangian for the extremum problem is

L = −
9∑
j=1

pj ln(pj)+ λ

(
d̄−

9∑
j=1

pjdj

)
+ η

(
1−

9∑
j=1

pj

)
. (18)

SinceH is strictly concave, there is a unique interior solution. Solving the first-order conditions yields theME exponential
result

p̂i =
exp(−diλ̂)

9
9∑
j=1
exp(−djλ̂)

, (19)

for the ith outcome. In this context, the p̂i are exponentially FSD and the chosen FSD distribution is the one that has the
greatest combinatorial multiplicity. We note again that p(λ) is a member of a canonical exponential family with mean

d̄ =
9∑
j=1

pj(λ)dj, (20)

and Fisher’s information measure for λ (see Golan et al., 1996, p. 26)

I(λ) =
9∑
j=1

pj(λ)d2j −

(
9∑
j=1

pj(λ)dj

)2
= Var(d). (21)
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Table 2
The estimated maximum entropy (ME) distributions (with a uniform reference distribution) for the digit problem.

FSD mean p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8 p̂9 H(p̂)

2.0 0.496 0.251 0.126 0.064 0.032 0.016 0.008 0.004 0.002 1.38
3.0 0.306 0.217 0.153 0.108 0.077 0.054 0.038 0.027 0.019 1.88
3.55 0.238 0.188 0.149 0.118 0.093 0.074 0.058 0.046 0.036 2.03
4.0 0.191 0.163 0.140 0.120 0.103 0.088 0.075 0.065 0.055 2.12
4.5 0.148 0.137 0.127 0.118 0.109 0.101 0.094 0.087 0.081 2.18
5.0 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 2.20
5.5 0.081 0.087 0.094 0.101 0.109 0.118 0.127 0.137 0.148 2.18

4.3. Some mean-related ME distributions

Using a uniform reference distribution, the resulting ME distributions for a range of FSD means (including the Stigler
mean of 3.55) are presented in Table 2.4 As we can see from the table, when the FSD mean is 5, the ME solution is a
uniform distribution and results in themaximum entropy value forH(p̂). The Stigler FSDmean, 3.55, yields amonotonically
decreasing ME distribution consistent with the Stigler distribution and a correlation with the Stigler distribution that
approaches 1.0. Several other monotonically decreasing distributions resulting from a variety of mean values are also
shown.
In Table 2, consider any mean. There are an infinite number of solutions or sets of probabilities, p1, p2, . . . , p9, that are

consistent with any particular mean value. That is, there are many combinations of first significant digits that will yield a
particularmean. In order to choose among these possible solutions, we have employed themaximum entropy principle. The
entropy value, H(p̂), that we maximize can be understood as a numerical measure ranging from zero (completely informa-
tive) to its maximum value (completely uninformative). These monotonically decreasing maximum entropy distributions
with their corresponding mean values are shown in Table 2.
Under ME, the exponential null hypotheses that result have especially appealing properties. We have minimized the

number of underlying assumptions required to arrive at a solution. In addition, this criterion choice yields a solution
distribution with maximum combinatorial multiplicity. This property is desirable because, in the absence of assumptions,
the chosen distribution among the possible distributions should logically be the one that occurs most frequently, i.e. the
choice with maximum multiplicity. Lastly, the chosen distribution is as close to the uniform distribution as the data will
permit.

5. Discussion

Benford’s Law has been shown to be applicable to a large set of seemingly unrelated phenomena from the area of
rivers to campaign donations to census statistics. Indeed, the boundaries of this set are far ranging. At the same time,
not all data sets follow Benford’s Law (Durtschi et al., 2004). Some appear to be related to Stigler’s Law. Others follow the
outlines of the power law or Zipf’s Law. Each law appears to apply to some data contexts, but none apply to all contexts.
As we have shown, these various laws are related and can be viewed as members of a family of monotonically decreasing
distributions.
In this paper, we have provided a basis for describing, connecting, and unifying this family of distributions. We have also

highlighted how first significant digits can be examined in a data-adaptive context. As a data set’s FSD mean changes, our
information-theoretic methods suggest alternative null hypotheses for the digit proportions. These methods also supply a
basis for realizing an exponential family of FSD distributions and relating it to a particular underlying data set distribution.
In so doing, our results extend the range of Benford’s Law to data contexts that initially seem to violate Benford’s Law.

Appendix

A.1. Mixing uniform distributions

From Section 2, we know that the probability of an FSD being d depends on which of three distinct ranges within the rth
cycle we are examining. Noting Stigler’s assumption of uniformly distributed upper bounds in a given data set, we obtain
the density function of the upper bound b,

f (b) =
1

9× 10r
(A.1)

4 For comparison and curiosity, results when the reference distribution is the Stigler distribution are presented in the Appendix.
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and integrate over the three regions to find Stigler’s Law for d ∈ 1, 2, . . . , 9,

P(FSD = d) =
∫ d10r

10r

10r

9b
dF(b)+

∫ (d+1)10r

d10r

(
10r

9b
+
b− d10r

b

)
dF(b)+

∫ 10r+1

(d+1)10r

10r+1

9b
dF(b)

=
1

9× 10r

(
10r

9

∫ (d+1)10r

10r

db
b
+

∫ (d+1)10r

d10r
db− d10r

∫ (d+1)10r

d10r

db
b
+
10r+1

9

∫ 10r+1

(d+1)10r

db
b

)

=
1

9× 10r

[
10r

9
ln(d+ 1)+ 10r − d10r ln

(
d+ 1
d

)
+
10r+1

9
ln
(
10
d+ 1

)]
=
1
9

(
1+

10
9
ln(10)+ d ln(d)− (d+ 1) ln(d+ 1)

)
. (A.2)

A.2. Estimates with Stigler FSD reference distribution

See Table A.1.

Table A.1
The estimated maximum entropy (ME) distributions (with a Stigler FSD reference distribution) for the digit problem.

FSD mean p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8 p̂9 H(p̂)

2.0 0.503 0.244 0.124 0.064 0.033 0.017 0.009 0.004 0.002 1.38
3.0 0.312 0.211 0.150 0.108 0.078 0.056 0.040 0.027 0.018 1.88
3.55 0.241 0.183 0.146 0.117 0.095 0.077 0.061 0.047 0.034 2.03
4.0 0.194 0.159 0.137 0.119 0.104 0.091 0.078 0.065 0.051 2.12
4.5 0.150 0.133 0.124 0.117 0.111 0.105 0.098 0.088 0.075 2.18
5.0 0.112 0.107 0.109 0.110 0.113 0.116 0.116 0.113 0.103 2.20
5.5 0.081 0.084 0.091 0.100 0.111 0.123 0.133 0.140 0.138 2.18
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