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To make causal inferences from observational data, researchers
have often turned to matching methods. These methods are variably
successful. We address issues with matching methods by redefining
the matching problem as a subset selection problem. Given a set
of covariates, we seek to find two subsets, a control group and a
treatment group, so that we obtain optimal balance, or, in other words,
the minimum discrepancy between the distributions of these covari-
ates in the control and treatment groups. Our formulation captures
the key elements of the Rubin causal model and translates nicely into
a discrete optimization framework.
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1 Experimental versus observational studies

Experimental studies are powerful because the experimental framework allows one to
examine causal effects. Applying standard statistical models to non-experimental or
observational data, on the other hand, generally allows the researcher to make
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associational inferences only. The key difference between experiments and observa-
tional studies is that in experiments, when randomization is successful, the treatment
effect is isolated from potential confounders. Differences in response can thus be
attributed to the treatment.
Experiments can be complex and multifaceted, but let us assume, for simplicity,

that a subject is either treated (T=1) or not (T=0). For subject i, i=1, . . .,N, the
two potential outcomes are Yi(0) and Yi(1). The causal effect of the treatment, as
measured by Y, on a particular subject i, is

Yi 1ð Þ � Yi 0ð Þ: (1)

The fundamental problem of causal inference is that it is impossible to observe the
value of both Yi(1) and Yi(0) on the same subject because the subject has either been
exposed to the treatment or has not. Only one of the terms in Equation (1) is observable
(HOLLAND, 1986).
The Rubin causal model reconceptualizes this framework so that either the

outcome under treatment or under control, but not both, needs to be observed for
each unit (RUBIN, 1974; RUBIN, 1978). Hence, one statistical solution to the
fundamental problem of causal inference is to shift to an examination of an average
treatment effect (ATE) over all of the subjects,

ATE ¼ E Y 1ð Þ � Y 0ð Þð Þ ¼ E Y 1ð Þð Þ � E Y 0ð Þð Þ: (2)

A remaining issue for observational studies arises from the non-random nature of
the subjects in the data set. One observes some set of subjects who have received a
treatment, giving us E(Y(1)|T=1). From this group, the average treatment effect
for the treated (ATT) is

ATT ¼ E Y 1ð Þ � Y 0ð ÞjT ¼ 1ð Þ; (3)

which quantifies the effect of the treatment on subjects that are treated. In general,
E(Y(1)) 6¼E(Y(1)|T= 1) and E(Y(0)) 6¼E(Y(0)|T= 1). That is, the ATE,
E(Y(1))�E(Y(0)), and the ATT, E(Y(1)|T= 1)�E(Y(0)|T= 1), are not generally
interchangeable.
The ATE and the ATT would be interchangeable if the independence assumption –

exposure to treatment is statistically independent of all other variables, including
Y(1) and Y(0) – holds because conditioning on treatment is then irrelevant. This
allows us to compute the ATE as E(Y(1)|T= 1)�E(Y(0)|T=1), but we must still
determine how to compute E(Y(0)|T= 1), the untreated outcome for treated
individuals. Notice here that if treatment is completely random, then a viable
approach is to use the average outcome of similar subjects who were not exposed
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to treatment. We would then no longer require an observation of Yi(1) and Yi(0)
from the same subject, but are able to use information from different subjects. If
exposure to treatment satisfies the independence assumption, then those who have
been treated give us information about E(Y(1)), whereas those who have not been
treated give us information on E(Y(0)). Hence, the treatment effect can be calcu-
lated as

ATE ¼ ATT ¼ E Y jT ¼ 1ð Þ � E Y jT ¼ 0ð Þ ¼ 1
Nt

X
i2 T¼1f g

Yi 1ð Þ � 1
Nc

X
i2 T¼0f g

Yi 0ð Þ; (4)

where Nt is the number of treated subjects, Nc is the number of control subjects,
{T=1} denotes the set of treated subjects, and {T=0} denotes the set of control
subjects.
In observational data, it is unusual for the independence assumption to hold. The

treated group almost surely differs systematically from the non-treated group. Hence,
if one wishes to make causal inferences from observational data, then the task at hand
is to postprocess the observational data so that exposure to treatment satisfies the
independence assumption. If this can be satisfactorily accomplished, then the
postprocessed data will resemble a randomized experiment, and one can then
straightforwardly compute the treatment effect.

2 Matching

‘Matching’ is a method for postprocessing observational data so that they resemble
experimental data by simulating statistical independence of treatment exposure and
all other available variables (RUBIN, 1974; RUBIN, 1977; RUBIN, 1978). The problem
involves two population groups, treated and control, and a set of pretreatment
covariates, X. The objective is, given the treatment group, to identify a control group
so that the treated and control covariate distributions are statistically indistinguishable,
creating the ‘appearance of randomization’. If treatment is completely random for
similar individuals, then the unconfoundedness or the selection on observables assumption
is satisfied. Formally, if

Assumption 1: T is independent of Y(0) and Y(1), conditional on X= x, and
Assumption 2: 0<P(T=1|X= x)< 1,

hold, treatment assignment is ‘strongly ignorable’ (ROSENBAUM and RUBIN, 1983).
The driving goal of matching is to postprocess observational data so that treatment
assignment is strongly ignorable.
The first step in matching is to establish a distance metric that quantifies the

difference between two subjects on the basis of their covariates. The second step is
to match subjects so that this distance metric is minimized across all matches.

An optimization approach for causal inferences 213

© 2013 The Authors. Statistica Neerlandica © 2013 VVS.



Matching methods are variably successful, sometimes failing to replicate the results of
corresponding randomized controlled trials (LALONDE, 1986; DEHEJIA and WAHBA,
1999; SMITH and TODD, 2001).1 DIAMOND and SEKHON (2012) document shortcomings
and propose a genetic algorithm to identify a distance metric that results in better
covariate balance. They posit that the long-running debate between DEHEJIA and
WAHBA (1999, 2002) and SMITH and TODD (2001, 2005A, 2005B) is largely a result of
researchers using matching methods that have not achieved good, or ‘good enough’,
balance in the covariates. In particular, although the original LaLonde data analysis
claimed that the balance was good, subsequent analyses demonstrated that balance
could have been better. This debate highlights a key deficiency with matching
methods – there is no baseline to judge the success of the matching procedure in
achieving balance. Matching produces a set of control subjects that are similar to
treated subjects, but we are unsure whether we have identified the most similar set
of subjects or whether there is a better balanced set that might result in a different
estimated treatment effect.
ROSENBAUM and RUBIN (1985) also illustrate the goal of covariate balance and the

uncertainty of having achieved it. They used three different matching methods
(nearest available matching on the estimated propensity score, Mahalanobis metric
matching including the propensity score, and nearest available Mahalanobis metric
matching within calipers defined by the propensity score) to obtain three different
matched samples. They stated that ‘[t]he third matching method—Mahalanobis
metric matching within propensity score calipers—appears clearly superior’ because
it resulted in the best covariate balance (ROSENBAUM and RUBIN, 1985, p. 38).
ROSENBAUM, ROSS and SILBER (2007) explain that ‘one can construct several matched
samples by different methods and select for use the sample that produces the most
satisfactory balance on covariates’. This work highlights that there are multiple
methods by which one might obtain a matched sample. The clear message is that
any one method may not identify the best balanced matched set; so, different methods
should be explored to identify the one that yields the best balance.
Plainly, the various works of Rubin and Rosenbaum make it clear that the critical

assessment factors are not in the individual matches, but rather on the resulting
treatment and control covariate distributions. That is, they assess statistical indepen-
dence of the covariates with treatment exposure by examining covariate balance at the
aggregate distribution level, not at the level of individual matches. The individual
matches are important insofar as they provide a means for achieving balance in the
covariate distributions. Indeed, if the individual matches are not sufficiently similar,
then the overall covariate distributions will not be balanced, and the estimate of the
treatment effect will not be unbiased (ROSENBAUM and RUBIN, 1983). We know,
however, from logic, that the converse of this statement is not necessarily true. If the
covariate distributions are balanced, then the origin of this balance need not be from
individual matches. Moreover, individual matching procedures are varyingly successful
in this venture to obtain covariate balance. Success depends on a variety of factors such
as the closeness of the matches, the specification of the propensity score, the nature of
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the underlying data, the metric to assess the closeness of a match, and the algorithm for
pairing subjects, to name but a few. If individual matching is not necessary and the
methods are inconsistently successful, then the door is open for exploring other fruitful
methods for obtaining covariate balance.

3 Randomized experiments and twin studies

An important insight from the experimental realm is that there are different ways to
conduct experiments to isolate treatment effect. Matching most closely resembles an
identical twin framework where the data are comprised of identical twins where one
is treated but not the other. In these studies, subjects are not randomly drawn.
Covariate balance is attained because the subjects are identical twins. Twins studies
comprise an experimental framework but are not representative of all experimental
frameworks. The twin framework differs from randomized trials where subjects are
randomly selected from a population, and then randomly assigned to treatment or
control. A successful randomization process produces treatment and control groups
with covariate distributions that are statistically indistinguishable. The covariates
are balanced; but unlike the twin framework, the subjects in the treated group do
not have a matching twin in the control group. Both randomized trials and twin
studies are valid experimental frameworks, and when successfully implemented,
isolate the treatment effect.
Because the critical assessment of balance is at the covariate distribution level

rather than at the level of individual matches, it makes sense to focus on the covariate
distributions rather than the individual/twin matches, which are not necessary for
obtaining balance. There has been some shift in focus in this direction as ROSENBAUM

et al. (2007, p. 80) make clear that ‘[b]alance refers to the distribution of the covariate
in treated and control groups after matching, rather than to close matches in each and
every pair. For instance, there is balance on diabetes if the proportion of diabetics is
about the same in treated and control groups after matching, even if diabetics are not
always matched to other diabetics’. Ensuring a close match in the covariate
distributions is a departure from the traditional manner in which matching has been
performed, but comports well with the idea of balance.2

Because twin studies comprise only a particular subset of experiments, the results
from matching methods (intended to replicate twin studies) are subsumed by results
from a method that focuses on covariate distributions. If matching results in balanced
covariate distributions, then a method that balances covariate distributions will find
the same results that would be obtained by a matching procedure as well as results
that are consistent with a randomized experiment but would elude matching
procedures. If one is interested in estimating a treatment effect, then a twin study is
one way in which one might isolate and estimate a treatment effect, but it is, by no
means, the only way to do so. As such, the matching framework is one way in which
one might isolate a treatment effect but is also not the only way to do so. In this
paper, we move away from a narrow focus on identical twin experiments and present
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and discuss methods that emulate the larger class of randomized experiments. In
particular, we propose a focus shift from individual matches and twin studies to covariate
distributions and randomized experiments writ large.

4 Balance optimization subset selection

Rather than searching for twins or close individual matches, our method seeks to
identify a treatment group and a control group that resemble two groups that have
been randomly drawn from a population. In other words, we seek to postprocess
the data so that they resemble a randomized control trial rather than an identical twin
experiment.
Our study design, Balance Optimization Subset Selection (BOSS), recognizes

the matching problem as an optimization problem. One insight is that the goal
of causal inference methods is to optimize the level of balance. Matching proce-
dures currently match first then assess the success of the matching later by the
level of balance achieved. Without knowing how all matching methods perform,
it is difficult to assess if balance is good or ‘good enough’ because the baseline or
optimal level of balance in a particular data set is unknown. In our formulation,
our goal is optimal balance, not ‘good balance’. The optimal level of balance is
the baseline or standard for assessing any particular balance level. BOSS reframes
the causal inference problem from a matching problem to a subset selection prob-
lem where the goal is to find ST, a subset of the treatment pool, and SC, a subset
of the control pool, so that a measure of balance, b(ST,SC), is maximized. This
discrete optimization problem can be addressed using operations research
algorithms and heuristics in a flexible formulation where any measure of balance
can be incorporated into the objective function. The end goal, balance in the
covariate groups, remains the same.
For illustration and proof of concept, we present one simple implementation of this

optimization problem that incorporates data bins. In the BOSS with Bins (BOSS-B)
framework, we create sets of B uniformly sized data bins for each covariate and assign
covariate values to the bin whose value range includes it.
When the number of bins, B, is small, many different covariate values are mapped to

the same bin. However, when B is large, the increased granularity results in bins that
house a smaller range of covariate values. More formally, for covariate Xp, the
covariate values lie in the closed set, [Lp,Up], where Lp ¼ min

i2T∪C
Xpi, and Up ¼ max

i2T∪C
Xpi.

We can separate this range into B bins specified with B+ 1 breakpoints given by
Lp ¼ tp0 < tp1 < tp2 < ⋯ < tpB ¼ Up . These bins can be used to approximate the
marginal and joint distributions of the covariates. For a set of P covariates, there
exists a total of K ¼ Pþ P

2

� �
þ P

3

� �
þ⋯þ P

P

� �
marginal and joint distributions

because there are Pmarginal distributions, P
2

� �
joint distributions of two covariates,

P
3

� �
joint distributions of three covariates, and so forth, with P

P

� �
¼ 1 joint distribution

that includes all P covariates.

216 W. K. T. Cho et al.

© 2013 The Authors. Statistica Neerlandica © 2013 VVS.



The optimization routine seeks control units such that the control and treatment
covariate distributions are as similar as possible. If there are two covariates, p1 and
p2, then there are two marginal distributions and one joint distribution, for a
total of K=3 distributions. Using two bins per covariate (B=2), the first
marginal distribution is characterized by the set of bins for covariate
p1 tp10 ; t

p1
1

� �
; tp11 ; t

p1
2

� �� �� 	
; whereas the second marginal distribution is characterized by

the set of bins for covariate p2 ( tp2;0 tp21
� �

; tp21 ; t
p2
2

� �� �
). The joint distribution is defined by

the set of bins, tp10 ; t
p1
1

� �� tp20 ; t
p2
1

� �
; tp11 ; t

p1
2

� �� tp20 ; t
p2
1

� �
; tp10 ; t

p1
1

� �� tp21 ; t
p2
2

� �
; tp11 ; t

p1
2

� ���
tp21 ; t

p2
2

� �g: The optimization routine can be formulated to find balance for all, or any
subset, of theK distributions. In practice, it is not necessary to optimize over allK distribu-
tions because the distributions have overlapping information. In general, any n-way (n> 1)
distribution subsumes some number of lower-order distributions. The overall joint
distribution encapsulates all lower-order marginal and joint distributions.
Suppose the bins of interest are ordered from b=1, 2, . . .,NB (where the specific order-

ing is inconsequential). Let#{Sb} denote the cardinality of set Swith values in bin b. The
objective of the BOSS-B optimization problem is to minimize j# SC

b

� 	�# Tbð Þj over all
bins. Any objective function that minimizes these terms may be used to evaluate the
distribution fit. More formally, given a treatment group, T, of size N, a set of P pre-
treatment covariates, {X1,X2, . . .,XP}, and a set of NB bins for the distributions of
interest, find a subset SC⊂C of size N such that

XNB

b¼1

# SC
b

� 	�# Tbð Þ� �2
max # Tbð Þ; 1ð Þ (5)

is minimized. This objective function (5) is similar in to the w2 goodness-of-fit test
statistic.

5 Statistical properties of balance optimization subset selection

We now proceed to explore the statistical properties of the BOSS estimator by examin-
ing its performance on two different data sets. The first data set is a simulated data set.
The second data set is the LaLonde data set that has been extensively examined in the
context of causal inferences from observational data (LALONDE, 1986).

5.1 Simulated data set

For the simulated data set, we randomly generated three N(0,1) pretreatment
covariates, X= [X1,X2,X3] (each of size 100,000) and a positive definite 3� 3
variance–covariance matrix, Σ. The covariates in the treatment pool are created by
multiplying the covariate matrix and the square root of the variance–covariance
matrix (XΣ

1
2). Covariate i in the control pool is generated with mean zero and variance
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s2i1 þ s2i2 þ s2i3, where sij is the ijth element of Σ. This process ensures the same mean for
corresponding covariates in the treatment and control pool, but allows the variances
to differ. Next, we generated the response value for both the treatment and control
pools through the linear response function,

Y ¼ 14þ 7X1 þ 11X2 � X3 þ E; (6)

where E~N(0,2). Because the same response function is used for both treatment and
control, there is no treatment effect in the simulated data.
From our treatment pool, we non-randomly choose a treatment group of size 500

using a thinning algorithm.3 Our particular algorithm heavily favors units with
covariates values at the tails of its distribution. Figure 1 displays the treatment group
and control pool covariate distributions.4 There are three plots. The distribution for
covariate X1 is on the left. The plot for X2 is in the middle, and the plot for X3 is
on the right. The filled-in bars are for the control group, whereas the unfilled bars
are for the treatment group. As we can see, the distribution of covariates in the treat-
ment group are bimodal rather than normally distributed as they are in the control
pool. The difference in the distributions mimics a common pattern in observational
data where those who choose to be treated are a non-random group with covariate
distributions that do not resemble the covariate distribution of non-treated
individuals. The entire control pool is used, and the goal is to identify control groups
of size 500 with covariates that most closely match the covariate distribution in our
treatment group.
We ran experiments for B= 2, 4, 8, 16, and 32 uniformly sized bins per covariate.

Because these are powers of two, each larger set of bins simply divides the previous bin
set in half. That is, for two bins, the thresholds are t0< t1< t2, where t1= (t0+ t2)/2.
For four bins, the thresholds are t00< t01<⋯< t04, where t00= t0, t01= (t1+ t0)/2, t02= t1,
t03= (t1+ t2)/2, and t04= t2. Each unit’s covariate values, {X1i,X2i, . . .,Xki}, are placed into
the bin whose range includes that value, {X0

1i,X0
2i, . . .,X0

ki}, whereX0
ki= j if tkj�1 ≤Xki ≤ tkj .

Bins are created for the marginal distributions only.
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Fig. 1. Covariate distributions of treatment group and control pool (normalized). Left plot shows distribution
for covariate X1. Middle plot shows distribution for covariate X2. Right plot shows distribution for
covariate X3. The treatment group bars are unfilled, whereas the control pool bars are filled.
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A simulated annealing algorithm was used to identify control groups with covariate
distributions that were the most similar to the treatment group.5 Our results are shown
in Table 1. The column labeled Bins specifies the number of bins used (per covariate).
The column Observations reports the number of control groups with no imbalance that
were identified. The column Accepts reports the number of control groups for which we
accepted the null hypothesis of no treatment effect. The remaining columns list the
means and standard deviations for our estimated treatment effect, the Kolmogorov–
Smirnov two-sample test statistic (averaged over the three covariates), and the
Anderson–Darling two-sample test statistics (averaged over the covariates).
Several patterns are evident from the results in Table 1. First, as the number of bins for

each covariate increases, the estimate of the treatment effect tends toward its true value of
zero. This monotonically decreasing pattern is evident and, intuitively, should continue
as the number of bins increases, provided that optimal groups can be found with a larger
number of bins. Second, as the number of bins increases, the likelihood of accepting the
null hypothesis of no treatment effect increases. For 8, 16, and 32 bins, all of the identified
control groups lead to the conclusion that there is no treatment effect. Third, as the
number of bins increases, the standard deviations for each of our measures of fit tend
toward the true underlying standard deviation. Lastly, the Kolmogorov–Smirnov and
the Anderson–Darling test statistics indicate an increasingly closer fit for the covariate
distributions between the treatment and control groups as the number of bins increases.
In short, our estimate of the treatment effect tends toward the true value as the number of
bins/granularity increases. This point is underscored by Figure 2 that shows the distribu-
tion for the second covariate,X2 for the treatment group and an optimized control group.
In these plots, 4 (leftmost plot), 16 (middle plot), and 32 bins (rightmost plot) were used.
In the rightmost plot, the filled and unfilled bars are most similar. In all cases, the control
groups had no imbalance (i.e. the objective value was zero), which means that the distri-
butions between the treatment group and control group for the first and third covariates
are also similar. As expected, the distribution fits are closer when the number of bins is
larger. Notice as well that as the objective function value for our groups0 approaches
an optimal level, our estimate of the treatment effect tends toward the true treatment
effect. This result (using 32 bins) is shown graphically in Figure 3 as well as in
Table 2.6 Lastly, once a certain objective function value is achieved, our hypothesis test
for no treatment effect is accepted for all chosen control groups.

Table 1. Summary of optimal solutions

Bins Observations Accepts

Treatment effect Kolmogorov–Smirnov Anderson–Darling

Mean SD Mean SD Mean SD

2 183,103 0 9.712 0.397 0.293 0.006 30.154 1.597
4 11,932 4,680 2.177 0.319 0.133 0.005 8.425 0.740
8 7,079 7,079 0.753 0.199 0.106 0.006 3.523 0.451
16 870 870 0.170 0.126 0.037 0.004 0.268 0.054
32 2 2 0.067 0.121 0.034 0.005 0.156 0.050

Note: Control and treatment group sizes are constrained to be equal. Control groups do not contain any
duplicate observations (i.e. individuals are chosen ‘without replacement’). SD, standard deviation.
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5.2 LaLonde data set

We ran the same simulated annealing heuristic on the well-studied LaLonde data
(LALONDE, 1986). These data are from the National Supported Work Demonstration
Program, a randomized job training experiment. An experimental benchmark was
computed from the experiment, and then the data were augmented with survey data.
LaLonde’s intention in creating this data set was to examine how well statistical
methods would perform in trying to replicate the randomized experiment. In our
analysis of these data, we used the DEHEJIA and WAHBA (1999) subsample for the
treatment group, which includes pretreatment income in 1974 as a covariate, and
the Current Population Survey individuals for the control pool. The treatment group
contains 185 individuals, and the control pool contains 15,992 individuals. There are
eight covariates (some binary, some continuous) in this data set. The experimental
benchmark for the treatment effect is $1794.
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Fig. 3. Average treatment effect by objective function (OF) range (32 bins). Graph shows the estimate of
the average treatment effect (TE) and the estimate of its standard deviation (SD).
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Fig. 2. Distribution of covariate X2 in treatment and control groups. Left plot shows results from
using four bins. Middle plot shows results from using 16 bins. Right plot shows results from
using 32 bins. Unfilled bars are used for the treatment group, whereas filled bars are used for the
control group.
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A summary of our solution search is shown in Figure 4. We attempted to achieve
optimal balance for each of the eight covariates. As we can see from the figure, as
balance (as measured by Equation (5)) improves, the estimate of the treatment effect
approaches the experimental benchmark. This supports the argument of DIAMOND

and SEKHON (2012) that sufficient covariate balance is necessary to obtain better
estimates of the treatment effect. These results mimic those that we found with the
simulated data set. One difference between these two data sets is that we were able
to obtain better overall balance for the simulated data than for the LaLonde data.
This may be an indication of the difficulty of identifying such solutions when the

Table 2. Solutions (using 32 bins) sorted by objective function value

OF Range Observations Accepts

Treatment effect Kolmogorov–Smirnov Anderson–Darling

Mean SD Mean SD Mean SD

≤1e-07 2 2 0.067 0.121 0.034 0.005 0.156 0.050
1e-07–10.0 29,006 29,006 0.930 0.376 0.042 0.007 0.352 0.140
10.0–20.0 18,285 16,679 1.797 0.285 0.058 0.005 0.830 0.171
20.0–30.0 13,900 2854 2.402 0.264 0.068 0.004 1.321 0.189
30.0–40.0 11,549 59 2.881 0.273 0.077 0.004 1.822 0.216
40.0–50.0 10,296 1 3.302 0.279 0.085 0.004 2.320 0.236
50.0–60.0 9178 0 3.663 0.295 0.092 0.004 2.809 0.263
60.0–70.0 8176 0 4.018 0.299 0.098 0.004 3.329 0.291
70.0–80.0 8077 0 4.321 0.307 0.104 0.004 3.831 0.319
80.0–90.0 7468 0 4.625 0.319 0.110 0.003 4.357 0.345
90.0–100.0 7030 0 4.909 0.320 0.115 0.003 4.889 0.369

Note: Control and treatment group sizes are constrained to be equal. Control groups do not contain
any duplicate observations (i.e. individuals are chosen ‘without replacement’). SD, standard deviation;
OF, objective function.
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Fig. 4. LaLonde data: average treatment effect by objective function (OF) range (32 bins). Graph shows
the estimate of the average treatment effect (TE) and the estimate of its standard deviation (SD).
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number of covariates is large or may also be a reflection of the idiosyncrasies of the
data set. Not all observational data sets, after all, are well-suited for causal inferences.
The LaLonde data are peculiar in that the treatment group is particularly unique and
may not have a suitable counterpart among non-treated individuals. All the same, the
same pattern was evident in both analyses: as balance improved, our estimate of the
treatment effect approached the expected estimate.
For the LaLonde data, our lowest objective function value was 17.17. This

particular solution yielded an estimated treatment effect of $1740.75, just $53.25 from
the experimental benchmark. We do note, however, that for these data, there was a
good amount of variance in the treatment effect estimate among the set of solutions
with objective values between 10 and 20. As such, the researcher might place more
weight on the mean value in this range and the associated standard deviation for
the treatment effect estimate among these various solutions. Here, there were 20
solutions in the set with a mean of $1594.83 and a standard deviation of $280.88.
The experimental benchmark is well within a standard deviation, although this view
expresses more uncertainty about the estimated treatment effect than simply using
the solution associated with the lowest objective value. Note as well that the grouping
of the objective values is largely arbitrary. Any decisions on this realm should be
broached with a good understanding of the underlying substantive problem.

5.3 Discussion of results

In any observational data set, there may be both a large number of possible control
groups as well as a large number of control groups that have essentially the same level
of balance with the treatment group. Plainly, a large number of subsets yields
essentially the same level of balance, because swapping out any single unit for another
unit changes the balance only marginally. The ability to explore the range of
treatment effects that arise from different subsets with essentially identical balance
is notable and nicely yields a framework for computing an unbiased treatment effect
estimator along with its associated standard error. There is also a nice adherence to
statistical theory underlying randomization because repeated, properly randomized
trials will produce distinct treatment and control groups, all satisfying random
selection, all producing balanced covariates, but producing different estimates of
the treatment effect. The ability to find and categorize a large number of essentially
equally balanced control groups sets the BOSS framework apart from matching
methods that identify a single-matched group. With matching methods, researchers
sometimes compute a bootstrapped standard error for the estimated treatment effect.
BOSS, on the other hand, allows one to construct a distribution of control groups from
which we can compute a mean and associated standard error as well as establish a
baseline level of balance that can be used to judge the level of balance for any
particular control group.
Although our BOSS-B experiments exhibit favorable properties, they also highlight

remaining issues. First, although it is desirable to obtain many solutions with
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comparable balance statistics, how to digest somuch data is not always straightforward.
One might compute a mean and standard deviation for the set of solutions in the best
balanced set, but how to define the different ranges of objective function values where
values will be grouped can be arbitrary. At minimum, the principles of design-based
research and strong substantive knowledge of the problem should guide decisions on
this realm (ANGRIST and PISCHKE, 2008). Second, although our balance statistics indicate
a close fit, obtaining balance becomes increasingly difficult as the number of covariates
increases. It is plain that balancing more covariates is more difficult than balancing
fewer covariates. Third, and less obvious, but equally important, including more covari-
ates introduces thorny issues regarding the weight that should be placed on balancing
each covariate. The covariates are not likely to be equally well balanced. Instead,
balance on one covariate may compete with balance on other covariates. The best ‘over-
all balance’ can be achieved by balancing one covariate at the expense of the others or by
balancing all covariates at the same level. The best choice is non-obvious and not
captured by balance statistics that are averaged over a set of covariates.
The bins approach also highlights an important trade-off. As the number of bins

increases, our estimate of the treatment effect tends toward the true treatment effect,
but also creates an increasingly difficult optimization problem. The increased
complexity points toward a need to improve our optimization tools, whereas the trend
in our estimates demonstrates that the BOSS approach presents a viable causal
inference framework. To be clear, we hardly advocate the bins approach as the proper
implementation. Rather, we began with BOSS-B simply to provide a proof of concept
for the novel and promising theory underlying the BOSS framework. Nonetheless,
there is plainly much work to be performed before the theory is successfully
implemented.
Our message is that the causal inference literature can expand in new, fruitful, and

exciting directions by incorporating insights from randomized experiments writ large
rather than focusing narrowly on twin experiments and individual matches.
Matching, in the best scenario, can closely replicate a single twin study. Our approach
searches the entire space of possible control groups and produces a distribution with a
large number of control groups that satisfy a balance objective. Fundamentally, we
are proposing a paradigm shift from matching that explores sets of individual
matches and returns one particular match to a subset selection framework that
expands the search universe into the realm of all randomized experiments and returns
solutions that easily number in the tens or hundreds of thousands.

6 Research directions and discussion

For future work, rather than using bins, we might optimize directly on a balance
measure such as Kullback-Leibler divergence Kolmogorov–Smirnov, Anderson–
Darling, a two-sample t-statistic for the difference of means, or some simultaneous
combination of such distributional goodness-of-fit measures. We may also avoid
optimization on all marginal and joint distributions with an approach that
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incorporates the covariance structure of the covariates into the objective function. These al-
ternative approaches free us from the specific issues associated with the binning model, but
raise other problems for optimization. NIKOLAEV et al. (2013) discuss some of these issues.
To be sure, old issues remain. What covariates should be balanced between the two

groups? Are all the relevant covariates available? Even a perfect distributional fit
between the observed covariates in the control and treatment groups will not yield
an unbiased estimate of the treatment effect if unobserved covariates remain
unbalanced. These issues, however, will perpetually remain for those wishing to make
causal inferences with observational data. No methodology can save us from these
data woes. Indeed, there are always a set of issues that arise in any statistical model,
and it is always the researcher’s charge to understand his or her model, its
assumptions, and to interpret his or her statistical output accordingly. That said, we
have formulated a new set of models and algorithms that provide a fresh set of
practical tools for enhancing our understanding of causal structures by improving
the ability to obtain balanced subgroups. Our formulation is flexible and not specific
to a particular measure of balance. Any measure of balance can be incorporated, and
so the debate surrounding balance measures exists apart from our research.
Propensity scores may also be incorporated into our conceptualization as a covariate;
so, debates revolving around propensity scores also are not germane to the value of
our formulations. The optimization framework provides a novel and neutral method
and tool that will help inform, not enter or fuel, these ongoing debates in the causal
inference literature.
Our central insight is a discrete optimization framework that yields a more

balanced solution to the problem than any existing method. Our approach eliminates
the need for a distance measure and does not require a researcher to guess the proper
form of a propensity score model. Instead, the quality of treatment effect estimation is
now limited just by the complexity of an NP-Hard (non-deterministic polynomial
time hard) optimization problem and available computational power. Human bias
is replaced with computational constraints. The former is insurmountable. The latter,
while certainly not insignificant, becomes less constraining daily.
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Notes

1. These methods may fail if the selection on observables identifying assumption is not
satisfied. Alternatively, linear bias may be worse unless the covariates are distributed
ellipsoidally (RUBIN, 1976; RUBIN, 1976; RUBIN and THOMAS, 1992). If the covariates
are not all ellipsoidally distributed, then we do not have a good understanding of the
properties of the matching method. Notably, even if the Equal Percent Bias Reduction
(EPBR) property does hold, it may be undesirable if some covariates are more germane
to the matching venture than others. Moreover, propensity score matching methods
have additional obstacles because they are model dependent. If the wrong propensity
score model is used, then propensity score matchingmaymake covariate balance worse.
There is much that may go astray, and how or what distance metric to employ is both
critical and unclear.
2. The approach in coarsened exact matching is different from propensity score and
Mahalanobis metric matching, but the focus on individual matches is the same. In
addition, there are other variations such as greedy matching versus optimal matching.
These two methods result in different individual matches being made, but both
techniques yield individual matches.
3. We employ a variety of functions such as cube and square roots, trigonometric
functions, and logarithms to define the likelihood that a unit will be chosen from the
treatment pool for inclusion in the treatment group. The specific details and functions
are available upon request but are not particularly germane as long as we achieve our
purpose of choosing units non-randomly to form the treatment group.
4. In these figures, the covariate values are separated into 32 uniformly sized ranges or
bins. The control units are reduced by a factor of 1/200 to account for the difference
in size between the treatment group and control pool.
5. Pseudo code for the algorithm and a proof of NP-Hardness (non-deterministic
polynomial time hard) for the problem are available in NIKOLAEV et al. (2013).
6. Both the plot and the table omit solutions with objective value greater than 100.
The trends in all values continue for these solutions.
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