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This paper examines the role of spatial effects in ecological inference. Both formally and
through simulation experiments, we consider the problems associated with ecological
inference and cross-level inference methods in the presence of increasing degrees of
spatial autocorrelation. Past assessments of spatial autocorrelation in aggregate data
analysis focused on unidimensional, one-directional processes that are not representative
of the full complexities caused by spatial autocorrelation. Our analysis is more complete
and representative of true forms of spatial autocorrelation and pays particular attention
to the specification of spatial autocorrelation in models with random coefficient variation.
Our assessment focuses on the effects of this specification on the bias and precision of
parameter estimates.

1 Introduction

For at least half a century, it has been known that making accurate individual-level inferences
from aggregate data is extremely difficult (Robinson 1950; Goodman 1953, 1959). The
problem, commonly called the ecological inference problem, is complex and multifaceted,
and our understanding of the nuances involved in modeling aggregate data is continually
evolving. With any set of aggregate data—and with real-world data, in particular—it is
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difficult to ascertain whether the conditions under which micro-level or individual-level data
will aggregate consistently and without bias are met. Indeed, making such determinations
often proves sufficiently difficult to render the desired data analysis infeasible.

To gain some insight into the ecological inference problem, we approach the estimation
from an undertraveled path. In particular, we focus on inroads that can be made from an
explicit consideration of spatial effects (i.e., spatial autocorrelation and spatial heterogene-
ity) and how they affect the information contained and observable in aggregate units. We
demonstrate that the studies of spatial effects thus far in this context are inadequate, in both
breadth and depth. Although it is extremely difficult, if not impossible, to characterize all
forms of spatial effects, there is much room for progress. In this article, we simulate several
realistic forms of spatial effects and then assess the impact of these effects on the ability to
make reliable cross-level inferences.

We proceed by first defining spatial heterogeneity in the context of the ecological infer-
ence problem. Next, we discuss the interrelationship between spatial effects and aggregation
bias. We follow this with a brief outline of King’s (1997) “solution” to the ecological infer-
ence problem before proceeding to classify different types of spatial effects and to discuss
how they pertain to the problem of making cross-level inferences. We examine spatial ef-
fects in an actual data set that conforms to the standard ecological inference design and
then demonstrate the role of different degrees of spatial autocorrelation through a series of
Monte Carlo simulations. In the simulations, we focus on the bias and precision of eco-
logical inference estimators. We conclude by summarizing the impact of spatial effects on
aggregate data analysis and outlining some directions for future research.

2 Extreme Spatial Heterogeneity

Thus far, much of the work on the ecological inference problem in the mainstream social sci-
ence literature has focused on the condition of aggregation bias, while other definably trou-
blesome characteristics of aggregate data have received less attention (e.g., Ansolabehere
and Rivers 1997, King 1997; Cho 1998). The role of spatial effects, in particular, has not been
examined extensively or has been dismissed as less consequential than the aggregation bias
assumption. Geographers depart from this general mindset in their study of the “modifiable
areal unit problem” (MAUP) (Openshaw and Taylor 1979), a problem that is isomorphic to
the ecological inference problem. While geographers are also concerned with aggregation
bias, they somewhat uniquely place considerable emphasis on the issue of “zoning.” That is,
they are mindful of the spatial arrangement of the data and the specific size of the aggregate
units of observation. In this paper, we meld this geographic perspective with the literature
on ecological inference by considering the ecological inference problem in the context of
spatial effects. For example, ecological inference can be seen as an example of spatial het-
erogeneity, or the phenomenon whereby a model (i.e., parameters, functional specification,
error specification, etc.) is not constant across spatial observations (Anselin 1988, 1990).
This is distinct from spatial autocorrelation, which is the match between attribute similarity
and locational similarity, i.e., when large or small values coincide in space (positive spatial
autocorrelation).1

For ease of exposition, we use the same notation as King (1997) and couch our examples
in the same terminology and setting, that of racial voting patterns in geographic units called
“precincts.” However, it should be clear that this setup does not limit the generality of our

1The classic reference on spatial autocorrelation is Cliff and Ord (1981). We refer the reader to this source for a
more technical treatment of spatial autocorrelation and spatial autocorrelation statistics.
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treatment, and the overall framework applies equally well to other settings where ecological
regression may be performed, such as the one considered in our empirical example.

We begin with the basic accounting identity that relates the total rate of voter turnout by
precinct, Ti , to the composition of the precinct’s population with respect to two mutually
exclusive and exhaustive subgroups, say, proportion nonwhite, Xi , and proportion white,
(1 − Xi ). The parameters in the model are the unknown (and usually unobservable) pro-
portions of nonwhite turnout, βb

i , and of white turnout, βw
i . The relationship between these

variables in the accounting identity is

Ti = βb
i Xi + βw

i (1 − Xi ). (1)

This accounting identity holds exactly for each of the p precincts in the data set, yielding
a system with p equations (one for each precinct) and 2p unknowns (two parameters for
each precinct).

From a classical (non-Bayesian) perspective, estimation of the parameters in this model
is a special case of the incidental parameter problem. More precisely, no consistent esti-
mator can be constructed for the individual parameters, since no informational gain results
from obtaining further observations. Instead, each new observation creates two additional
parameters to estimate. The standard approach for dealing with this issue is to treat the
incidental parameters as “nuisance parameters” and to condition the estimation process
on their values to obtain consistent estimators for the other (nonnuisance) parameters of
interest [for a review of the technical issues, see Lancaster (2000), and the classic paper
by Neyman and Scott (1948)]. However, this approach does not apply in the ecological
inference context, since the parameters of interest are, in fact, the incidental parameters.
Thus, in a classical framework, there is no consistent estimator that can be constructed for
the individual parameters in an ecological inference problem, βb

i and βw
i .

In the spatial econometric literature, this situation is referred to as extreme spatial het-
erogeneity (Anselin 1988, 2000), and the “solution” is to impose spatial or geographical
structure on the nature of the variation of the individual coefficients across observations.
This approach, however, is only a partial solution, in the sense that the parameters to be
estimated cannot be incidental and, thus, must be constrained to vary either continuously
as a function of a small set of “fixed” parameters or in a discrete fashion by being constant
across (spatial) subsets of the observations. Likewise, King applies this logic of parameter
similarity in his model: The rationale underlying the EI estimator is to assume that the same
set of means, βb and βw, underlies all observations in the data set. Any heterogeneity in the
parameter values is modeled as random variation around these constant means. The constant
means (and the covariance matrix for the errors around the means) are, then, the parameters
that are estimated. Applying this random coefficient paradigm allows one to construct a
statistical model to estimate the “optimal” predictors for the individual parameters, βb

i and
βw

i , based on the estimates of the overall mean and the associated covariance matrix (e.g.,
Griffiths 1972).

While it is possible that the imposition of a random coefficient structure will capture
heterogeneity properly in some situations, the assumed structure is certainly not a panacea
for all instances of aggregate data. Moreover, the random coefficient structure is neither
general, flexible, nor robust, and furthermore, it ignores other more definite forms of spatial
structure that may be the source of the heterogeneity (Cho 1998; Freedman et al. 1998;
Anselin 2000). A critical issue here, and one that has been addressed sparsely, at best,
is determining the extent to which the assumed spatial structure can be verified solely
through observations of the aggregate data. We touch on this difficult issue but focus most
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of our attention on the effects that arise from different forms of spatial effects in aggregate
data.

3 Spatial Effects and Aggregation Bias

Before turning to specific models, we review the connection between spatial effects and the
more familiar notion of aggregation bias. It is important to note that while we artificially
separate these two conditions in our simulated data, aggregation bias and spatial effects
usually coexist in real data (King 1997, p. 159; Cho 1998). Hence, our analysis of the
consequences of spatial effects are conservative estimates, since the quality of the estimates
is likely to be reduced by additional and simultaneously appearing sources (i.e., aggregation
bias) as well.

Recent work on the ecological inference problem has emphasized that the origin of the
cross-level inference problem is aggregation bias. In this context, aggregation bias is said to
occur when the parameters in the model are correlated with the regressors.2 For instance, for
the model outlined above, if the parameters, βb and βw, are correlated with the regressors,
X , then aggregation bias exists, and making cross-level inferences is not straightforward. In
terms of the random coefficient model that we consider in more detail below, aggregation
bias amounts to a correlation between the random variation around the common mean
and the regressor X . As long as the latter is assumed to be exogenous, there cannot be
any aggregation bias. However, the assumption of exogeneity is suspect and not typically
reasonable. Indeed, one can conceive of many instances where the variation in either βb

i or
βw

i would, in fact, be a function of X . Hence, to produce accurate estimates of the micro-
level behavior, one must respecify the model in such a way that the parameters will be mean
independent of the regressors. One way this can be accomplished is by incorporating the
functional relation between the parameters and the X explicitly.

Since problems of ecological inference typically involve geographic units, the link be-
tween spatial patterns and ecological inference should be evident. The nature of the effect,
whether one exists, and how different forms of spatial effects affect the analysis, however,
are not clear. Achen and Shively (1995, chap. 4) focus much of their discussion on a problem
they term “intraconstituency spatial autocorrelation—the unmeasured similarity of voters in
the same district.” Their claim is that a properly specified aggregate data model must control
for intraconstituency spatial autocorrelation. In making this claim, they may seem to deviate
from the literature that places aggregation bias at the forefront of conditions that must be
controlled. However, while the Achen and Shively claim seems somewhat unorthodox at
first, a closer reading reveals that they consider spatial autocorrelation and aggregation bias
to be virtually one and the same. For instance, they state that “[d]ifferent constituencies will
exhibit different loyalty and defection rates, and it is only by quirk that these differences
will fail to correlate with the aggregate independent variable” (1995, p. 106). The implica-
tion is clearly that spatial autocorrelation is symptomatic of aggregation bias. Achen and
Shively’s (1995, p. 114) discussion of a solution—“what is needed for most applications
is strong substantive knowledge of how individuals group themselves into constituencies
and how best one might control for the resulting differences in mean disturbances”—while
framed in terms of spatial autocorrelation, clearly implies that fixing the problem of spatial
autocorrelation will simultaneously aid in alleviating aggregation bias.

2In econometrics, aggregation bias is not necessarily identified solely with this correlation but can also pertain to
aggregation across functional forms, etc. We focus here on the usual interpretation in the ecological inference
literature and leave the more complex aggregation issues for future work.
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A key observation, then, is that the problems of spatial autocorrelation and aggregation
bias, while separate and fundamentally different conditions, are, paradoxically, interrelated.
It is beyond the scope of the current paper to delve further into the link between the two
obviously related assumptions in aggregate data analysis. However, given the clear connec-
tion, it remains an important avenue of future research. Here, we simply draw attention to
the intricate interconnection in real data but now shift our focus to simulated data to ex-
plore the consequences of alternative conceptualizations of some forms of realistic spatial
autocorrelation and spatial heterogeneity (in the absence of aggregation bias).

4 King’s Ecological Inference Solution

The ecological inference solution proposed by King can be viewed as a combination of a
random coefficient approach and the familiar method of bounds, couched primarily in a
Bayesian framework. It is useful for expository purposes to characterize the EI estimator
primarily as a random coefficient model and to set aside the role of the bounds for now.3 A
basic assumption is that the heterogeneity in the model is due to random variation around
an underlying common mean, which yields a regression model with heteroskedastic error
terms. Formally, βb

i = βb + εb
i and βw

i = βw + εw
i , such that

Ti = βb Xi + βw(1 − Xi ) + ui , (2)

with E(ui ) = E[εb
i Xi + εw

i (1− Xi )] = 0, provided that E(εi Xi ) = 0. The latter condition is
satisfied as long as the Xi are exogenous, i.e., as long as there is no aggregation bias as defined
above. The variance term then becomes Var(ui ) = σ 2

b X2
i + σ 2

w(1 − Xi )2 + 2σbw Xi (1 − Xi ),
where the Xi are again exogenous, which is heteroskedastic as long as the Xi vary across
precincts. The extent to which this heteroskedasticity matters in any given situation is largely
an empirical matter—it depends on the heterogeneity among the Xi , which can be tested by
means of standard regression diagnostics (e.g., using a Breusch–Pagan Lagrange multiplier
statistic).

Note that in contrast to much of the theory and practice in the random coefficient litera-
ture, the error covariance in the EI estimator, σbw, is taken to be nonzero, since the accounting
identity implies an exact linear relationship between the two parameters.4 King exploits this
relationship in a model diagnostic he calls a “tomography plot.” This plot allows one to
visualize the constraints on the acceptable parameter pairs provided the original ecologi-
cal inference problem is exactly two-dimensional. Since the parameters are probabilities,
the plot is immediately constrained to the unit square. Each line in the plot embodies the
logically possible parameter values. Given a value for βb, the value of βw is determined
through the accounting identity. Hence, the possible parameter pairs, (βb, βw), lie on a line.

As long as there is a common underlying mean, or as long as the precinct-specific bounds
do not logically preclude the existence of a common mean, this mean can be estimated con-
sistently without any further distributional assumptions. Specifically, a consistent estimator

3Setting aside consideration of the role of the bounds does not have a material consequence on our discussion.
The main role of the bounds is to yield a truncated normal density as the basis for the likelihood and to provide
additional information for use in the derivation of the posterior density for each individual coefficient. Besides
the inclusion of the method of bounds, the other features of the EI approach are standard to random coefficient
estimation.

4The constraint is βb
i = Ti

Xi
− βw

i
(1−Xi )

Xi
. Unless Xi = 1, ∀ i , this implies a nonzero covariance between the two

coefficients. In contrast, see, for example, Griffiths et al. (1979), where the covariance between the random
components is set to zero.
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such as feasible GLS does not require an assumption of normality. However, this does not
hold when the truncation is explicitly considered as well. For example, the EI approach
imposes normality to estimate the common means and covariances from a likelihood that
does incorporate the parameter constraints in the form of a truncated bivariate normal.

Once the overall parameters are obtained, they can be used to construct optimal predic-
tors for the individual coefficients. As shown by Griffiths (1972), in the standard random
coefficient model, such an optimal predictor takes the form

β̂ i = β̂ + Σ̂ xi (x
′
iΣ̂xi )

−1(yi − x ′
i β̂), (3)

where β̂ is a vector of common means, Σ̂ is a matrix that contains the estimates of the random
error variances and covariances, xi is a vector of observations on the explanatory variables,
and (yi − x ′

i β̂) is the residual for observation i . In other words, the best linear unbiased
predictor is obtained by allocating the residual to each of the individual βi , using weights
that are a function of the value of the xi and the covariance of the random errors. The result
of employing such a specification is a model that yields a perfect fit for each observation.5

Consequently, diagnostics based on the usual notion of fit or lack of fit are meaningless.
The only notion of fit that may be used to construct diagnostics would be the one based on
the overall mean, β̂, but there is no observable counterpart to assess the properties of the
individual β̂ i . The EI estimator uses Bayesian constructs to derive the posterior distribution
of the βi , conditional upon the common parameters β̂ and Σ̂ [following the principles
outlined by Griffiths et al. (1979)], while incorporating information on the precinct-specific
bounds through Ti (using a truncated bivariate normal as the underlying distribution in the
likelihood function).

A well-known practical problem in the estimation of random coefficient models is the
lack of a positive definite covariance matrix, Σ̂. There are a number of ad hoc solutions
that have been proposed to deal with this problem. King avoids these issues altogether
by enforcing positive definiteness (as well as an adherence to the parameter bounds) in
the constrained maximum likelihood. Furthermore, in contrast to the classical treatment of
prediction of the individual coefficients, King generates a full posterior distribution that
incorporates, in addition to the common parameters, β̂ and Σ̂, the observation-specific
bounds that are evident from the tomography plot as well.

To summarize, the EI solution attempts to account for a particular aspect of heterogeneity,
conceptualized as random variation around a common mean. While this is a general method
for dealing with heterogeneity, the method does not incorporate any information about the
particular structure of the heterogeneity and is therefore not necessarily appropriate when
employed on data that do not exhibit this specific form of heterogeneity. For instance, in
some cases, instead of random variation around a common mean, the heterogeneity may
be “spatial,” i.e., distinct sets of geographic units will be heterogeneous from other distinct
sets in the data (Cho 2001). The basic EI model makes no attempt to exploit or discover the
underlying nature of this heterogeneity.6 In this sense, the EI model is not a spatial model.

5Note that yi − x ′
i β̂ i = yi − x ′

i (β̂ + Σ̂xi (x ′
i Σ̂xi )−1(yi − x ′

i β̂)) = 0.
6Note that our discussion here concerns primarily the basic EI model, i.e., the EI model with no covariates. We
are well aware that one may employ the extended EI model wherein one can include covariates into the model to
control for aggregation bias and spatial autocorrelation. If the correct covariates are introduced into the model,
the spatial heterogeneity can be modeled. However, the “correct” covariates are typically not known and King
supplies no formal method for choosing them. The sole passage in the book that is in the spirit of a “covariate
test” recommends “walking around some of these neighborhoods, or standing by polling places, or reading the
local press, or going to the supermarkets in the area” (King 1997, p. 281). King does not present a formal method
for modeling heterogeneity.
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5 Conceptualizing Spatial Models in the Aggregate Context

There are many ways to devise spatial models that can be categorized as different conceptu-
alizations of a substantive ecological inference problem. We review some of these models
below. We view these conceptualizations as a broad survey of the categories that embody
the different types of heterogeneity that are evident in aggregate data. We focus on three
basic forms of spatial/geographic aspects in data. The first conceptualization is based on
spatially random coefficients. This category has the same general underlying rationale as
the EI estimator, with the exception that spatial autocorrelation is introduced explicitly. The
second specification that we review concerns spatial heterogeneity in the form of discrete
changes in the underlying parameters. We call these spatial regime models. The last form
involves continuous variation over space (spatially varying coefficients).

5.1 Spatially Random Coefficients

Incorporating full two-dimensional and multidirectional spatial dependence in a random
coefficient specification such as EI, where different bounds constrain the parameter values
of each observation, is not a straightforward process. Although King (1997) claims to
assess the consequences of spatial effects, his Monte Carlo evidence is quite limited and
characteristic of a time-series perspective toward spatial analysis. More specifically, his
rendition of spatial autocorrelation is rooted in a unidimensional, one-directional process
and, thus, is not generalizable to all, or even most, forms of “true” two-dimensional and
multidirectional spatial autocorrelation. It is simple to see that in the spatial realm, precincts
have multiple neighbors (multidirectional) and the relationship between two neighboring
precincts is not one-sided (two-dimensional). Because his assessment of spatial effects is
simplified, he does not account for some of the standard features commonly associated
with spatial autoregressive processes such as simultaneity and induced heteroskedasticity
(Anselin 1988).

Even our broadening of the assessment of the role of spatial effects in this paper is
somewhat limited because of the multiplicity of ways in which they may be modeled. In
addition, how this is implemented is highly consequential. Our treatment, in contrast to
previous studies, touches the core of spatial effects, is the most comprehensive treatment to
date, and is reasonably representative of several important forms of spatial effects.

Before proceeding to describe our assessment of the role of spatial effects, we briefly
review King’s simplified treatment of the same matter. In particular, King’s specification,
described in the context of Monte Carlo simulation experiments, is as follows:

βi = δβi−1 + (1 − δ)ui , (4)

where ui is a (draw from a) truncated normal variate and β1 = u1 (King 1997, p. 167). In
this expression, King refers to δ as the “degree of autocorrelation.” However, upon closer
examination, it is obvious that this specification does not describe an autoregressive process
but, rather, is a weighted average of two truncated random variables, which is more akin
to a moving average specification. Moreover, this specification does not describe a process
that is spatial and, thus, does not sufficiently serve as a model for assessing the effect of spa-
tial autocorrelation. This alternative, nonspatial specification is not without consequences,
since true spatial dependence precludes a recursive formulation for the process and instead
requires all variates to be determined simultaneously. In other words, rather than taking
β1 as the initial starting point and then defining the other βi ’s recursively, in a true spatial
process, all the βi are determined jointly and simultaneously.
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In a random coefficient model, the spatial dependence pertains to the deviations around
the common mean, or the observation-specific error terms. A spatial autoregressive process
for these error terms implies that large or small deviations from the common mean will tend
to occur in spatial clusters, rather than in a spatially random manner, as is assumed in the
standard model. Formally,

(βi − β) = ρ
∑
j �=i

wi j (β j − β) + ξi , (5)

or

εi = ρ
∑
j �=i

wi jε j + ξi , (6)

where εi = βi −β are the error terms, ξi are i.i.d. innovation terms, and the index, j , refers to
the “neighbors” of i , as defined by the nonzero elements, wi j , of a spatial weights matrix W .7

In matrix notation, with ε as the p × 1 vector of random deviations from the common mean,
β, W as the p × p matrix of spatial weights, and ξ as a p × 1 vector of i.i.d. innovations,
the usual spatial autoregressive process is given as

ε = ρWε + ξ (7)

or as

ε = (I − ρW )−1ξ. (8)

The inverse matrix represents the so-called spatial multiplier, which demonstrates the joint
(simultaneous) nature of the spatial dependence. It is clear in this formulation that each εi

is a function of all the ξ j in the system through the elements of the matching row in the
inverse matrix (I − ρW )−1. For ease of notation, we represent these elements by ai j . The
complex nature of the resulting covariance matrix for the random coefficient model can be
seen if we substitute

∑
j a

b
i jξ

b
j for εb

i and
∑

j a
w
i j ξ

w
j for εw

i , with ai j as the row elements in
the spatial multiplier inverse. This yields an error term of the form

ui =
∑

j

ab
i jξ

b
j Xi +

∑
j

aw
i j ξ

w
j (1 − Xi ). (9)

Since the ξ b
j and ξw

j terms are uncorrelated across observations, the variance terms are still
a function of the variance and covariance of ξ b and ξw. However, the spatial multiplier
terms, ai j , induce extra heteroskedasticity. In addition, the autocorrelation yields nonzero
covariance terms between the errors for different precincts. Ignoring this extra variance and
covariance will yield inefficient estimates for the parameter, β, and biased estimates for the
variance term.

It is important to note that the spatial autoregressive process of the “spatial lag” variety
cannot be implemented in the EI model without violating the fundamental accounting

7By convention, the diagonals of a spatial weights matrix, or wi i , are set to zero and the elements in each row are
standardized so as to sum to one. For a recent and more complete review of the issues involved with specifying
spatial weights and incorporating them into regression models, see Anselin and Bera (1998).
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identity. For example, assume such a process in the dependent variable, T . For ease of
notation, represent T as a vector, where

T = ρW T + βb ∗ X + βw ∗ Xc. (10)

Here the X and Xc are suitable vectors, βb and βw are vectors of precinct-specific coeffi-
cients, and the operation, ∗, is the direct (element by element) product. The corresponding
reduced form is

T = (I − ρ W )−1(βb ∗ X + βw ∗ Xc). (11)

This is incompatible with the fundamental accounting identity because turnout in a precinct
would then be a function of the racial turnout characteristics in all other precincts in the
system, not just its own. In part, this is due to the assumption of an exogenous Xi . If one
relaxes this assumption, one could conceive of the actual (spatially correlated) pattern of Xi

to be the result of a spatial process yielding (I −ρW )−1 X �, where X � is the latent spatially
random original layout.8 However, since this clearly falls outside the standard approach of
the accounting identity, we do not pursue it further. In our Monte Carlo simulations, we
implement spatial autoregressive processes for the error terms.

5.2 Spatial Regimes

Spatial regimes consist of geographic subsets in which the model parameters assume distinct
values (Anselin 1988). For example, one can think of two subregions of precincts, Sg and
Sh , that together exhaust the district. Rather than allowing the parameters, βb

i and βw
i , to be

different for each precinct i , they may take on two distinct values, say βb
g for i ∈ Sg and βb

h for
i ∈ Sh (Cho 2001). The constancy of parameters across subregions is a testable hypothesis,
for example, by means of a spatial Chow test (Anselin 1990). A crucial assumption in the
spatial regime approach is the delineation of subregions. This should be exogenous to the
model, or aggregation bias will occur. Ideally, the delineation and regime estimation should
be carried out jointly (e.g., regimes with endogenous switching). However, this has not yet
been attempted in a setting that also incorporates spatial dependence. In practice, exploratory
spatial data analysis techniques such as local indicators of spatial autocorrelation (LISA)
(Anselin 1995) may be useful in suggesting local clusters or spatial outliers that may form
the core of a subregion. Also, the change point and parameter constancy literatures serve
as auspicious starting points (Cho 2001).9

5.3 Spatially Varying Coefficients

Incorporating spatially varying coefficients is a hierarchical approach toward modeling
the spatial variation of the model parameters across observations. This approach is also
referred to as spatial expansion (Casetti 1997). In its simplest form, each precinct-specific

8This process should not be confused with a true spatial autoregressive (lag) model at the micro scale, i.e., a
process that pertains to the individuals in each precinct. For example, such a process would be relevant if a
voter made a decision on whether or not to vote dependent on the neighbors’ decisions. This would represent
a behavioral process that results in spatial autocorrelation at the subprecinct scale but is not observable at the
precinct level itself.

9It should be noted that spatial regimes can (and often do) coexist with spatial autoregressive error processes.
However, we do not pursue this avenue here.
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parameter is a function of a (small) set of exogenous variables such as the terms in a spatial
trend surface (a polynomial in the latitude and longitude of the locations). For example,
the individual precinct estimates, βb

i , may take the form βb
i = βb + γ 1z1

i + γ 2z2
i + εb

i .
The presence of the random error leads to the same heteroskedastic disturbance that was
evident in the random coefficient model, but the regression includes several additional terms
as cross-products of the zk

i and the Xi (for technical details, see Anselin 1992). As in the
spatial regimes model, the constancy of the parameters is a testable assumption, and, in
principle, the determination of the variables to be included in the expansion should be the
subject of a careful specification search. In the context of ecological inference, additional
complications arise because the parameters are bounded. Because of the bounds, the βb

i that
follows from the expansion specification must be contained in the 0–1 interval.

A recent variant of a spatially varying coefficient model is the geographically weighted
regression (e.g., Fotheringham et al. 1998). Essentially, this is a form of spatial kernel
estimation that may be useful as an exploratory technique or as a diagnostic to assess the
presence of spatial heterogeneity. However, because it is not a model of that heterogeneity,
it is not pursued further in the current context.

Here we focus simply on spatially random coefficients, leaving other forms of spatial
models for future research. We mention the other forms above to highlight the vast array
of specifications that would fall under the spatial rubric. This limited approach has obvious
consequences for the generalizability of our results to the universe of possible problems
from spatial effects in aggregate data. Nonetheless, it is more far-reaching than King’s uni-
dimensional, one-directional rendition of spatial effects and greatly expands the evidence on
the performance of ecological inference estimators in the context of spatially autocorrelated
data.

6 Stroke Mortality Rates at the County Level in Texas

Before embarking on an analysis via simulation, we present a real-world example of spatial
effects. Our example comes from 1990 county-level data in Texas on incidences of deaths
from stroke.10 We consider both the data at the county level and the statewide aggregate. If
we were trying to surmise what happens at the county level from the state-level data, this type
of setting would be typical of the genre that we encounter in ecological inference problems.
The data include, for each of 254 counties, the stroke mortality rate among whites (S), the
proportion of white males (M), the proportion of white females (F), the total number of
whites (W ), the proportion of white males who died from strokes (βm), and the proportion
of white females who died from strokes (β f ). The relationship between these variables is

S = βm M + β f F. (12)

Since the data set includes the proportion of white males who died from strokes (βm) and
the proportion of white females who died from strokes (β f ), we have the “truth” that one
might seek through EI. In general, these variables will not be available. Their availability
here is helpful because it allows us to assess the performance of various ecological inference
estimators on this aggregate data set.11

This data set is particularly interesting for our study of spatial effects in aggregate data
analysis because these data exhibit a high degree of spatial autocorrelation on a number of

10Data may be obtained from the authors upon request.
11Although these are not data on voting or some other political phenomenon, the relationship between this example

and a more political example should be transparent.
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dimensions. The stroke mortality rate among whites is highly spatially correlated, as are
the proportions of males and females who died from strokes. The spatial autocorrelation
of stroke mortality rates (S) is observable in aggregate data sets, but the spatial autocorre-
lation of the parameters is usually not observable. However, the spatial autocorrelation of
the dependent variable is not as interesting for our quest here, since it does not necessarily
imply spatial autocorrelation of the rates among males (βm) and females (β f ). Instead,
the spatial autocorrelation in S, the stroke mortality rate among whites, may result sim-
ply from spatial autocorrelation in M , the proportion of white males, a situation in which
we are not primarily interested here (although the M are significantly spatially autocorre-
lated). Our main concern revolves around the spatial autocorrelation of the parameters, βm

and β f .
Before discussing the spatial effects, we digress briefly to an exposition of measures of

spatial effects. In our analysis, we employ a few standard measures of spatial autocorrelation.
For instance, we examine Moran’s I statistic to make assessments about the degree of global
spatial autocorrelation in the data. Specifically, Moran’s I statistic is

I = N

S0

(
e′W e

e′e

)
, (13)

where e is a vector of OLS residuals, W is the weights matrix, and S0 = ∑
i

∑
j wi j . This

statistic can be thought of as a counterpart to the familiar Durbin–Watson statistic used to
detect autocorrelation in time-series data. Spatial autocorrelation occurs when the similarity
of values of interest is related to the locations of the units, i.e.,

Cov(yi , y j ) = E(yi y j ) − E(yi )E(y j ) �= 0, ∀ i �= j. (14)

It is clear from the specification of Moran’s I that calculation of the statistic requires
that we specify a weights matrix. In our analysis, we employ a number of weights. In our
example here, our results incorporate both rook weights (four neighbors on average, common
borders) and queen weights (eight neighbors on average, common borders and common
vertices).

In addition to examining the global spatial autocorrelation statistic for our data, we also
examine LISA statistics (Anselin 1995). This local Moran statistic is closely related to the
global Moran’s I ; specifically, the average of the local I statistics is equal to the global I , to
a factor of proportionality. Examining the local statistics allows us to identify observations
that are “extreme contributions” to the global statistic by noting which values are, say, two
or more standard deviations from the mean.

In our Texas stroke example, using rook weights, Moran’s I statistic for βm is 0.2519
and Moran’s I statistic for β f is 0.3966. Both are significant at the .001 level. With queen
weights, Moran’s I statistic is 0.2531 for βm and 0.3818 for β f . The significance level is
likewise high when queen weights are employed. Figure 1 presents a visualization of local
spatial autocorrelation. The plots on the left display the LISA statistics for the female stroke
mortality rate, while the plots on the right display the LISA statistics for the male stroke
rate.12 The two plots on the top are based on rook weights, while the two plots on the bottom

12LISA statistics are “local indicators of spatial autocorrelation.” Unlike Moran’s I , which is a global indicator of
spatial autocorrelation, LISA statistics provide an individual measure of local spatial autocorrelation for each
observation in relationship to its defined neighbors. See Anselin (1995) for more details.
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Fig. 1 LISA statistics. The LISA statistic is insignificant for the unshaded counties. The gray counties
have LISA statistics significant at the .05 level. The darker-shaded counties have LISA statistics
significant at the .01 level. The two plots on the top are based on rook weights. The two plots below
are based on queen weights. The two plots on the left display LISA statistics for the female stroke
mortality rate. The two plots on the right display LISA statistics for the male stroke mortality rate.

are based on queen weights. The unshaded counties have insignificant LISA statistics,
while the shaded counties have significant LISA statistics. The lighter-shaded counties
have LISA statistics that are significant at the .05 level. The darker-shaded counties have
LISA statistics that are significant at the .01 level. In sum, both global and local statistics for
spatial autocorrelation are highly significant in this data set, not only for the “observable”
variables, S and M , but also for the unobservable β f and βm , the parameters of interest in
an ecological analysis.

The results of estimating βm , the male stroke mortality rate, and β f , the female stroke
mortality rate, via OLS and EI are reported in Table 1, where the truth is also reported.
As we can see from comparing the model estimates to the true values, neither EI nor OLS
performs very well on this data set.13 Both models report estimates that are far from the

13The EI program comes with a number of diagnostics that one might employ in an analysis of these data. However,
there are no diagnostics to examine spatial effects. Since King (1997) states in his book that spatial effects are
inconsequential, one would not expect him to devote much effort toward developing diagnostics for these effects.
Instead, most of the diagnostics are related to the aggregation bias assumption. From King’s perspective, it is not
useful to examine these diagnostics here, since he does not claim that aggregation bias causes or is an indicator
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Table 1 Estimates of stroke mortality rates in Texas

Males Females

OLS/Goodman estimate −0.065 0.081
(0.009) (0.008)

EI estimate 0.009 0.007
(0.001) (0.001)

Truth 0.0064 0.0095

Note. Standard errors in parentheses.

truth. Moreover, EI reverses the relationship between the coefficients. That is, although
female stroke mortality rates are higher than male stroke mortality rates in Texas, the EI
results conclude that male stroke mortality rates are higher than female stroke rates. Such a
reversal of coefficient magnitude is noteworthy and would be instrumental in defining the
resulting analysis. For instance, in Voting Rights cases, the parallel is that the EI model
might report that whites voted in higher percentages for a certain candidate than black
voters when the truth is exactly the opposite. The ruling by the judge would be highly
affected (and wrongly so!) by such an assessment. So it is important to note EI’s pivotal
failure here. The OLS estimates may also be far from the truth and even out of bounds,
but the relationship between the coefficients is correct. Moreover, the out-of-bounds esti-
mates in this case is helpful because it immediately alerts the analyst to a problem. The EI
estimate, on the other hand, while in the [0, 1] bounds, is incorrect on other dimensions
(e.g., the relative direction of the two coefficients) and may leave the analyst with the faulty
impression that the underlying truth has somehow been tapped. So the property of falling
in-bounds in this case is somewhat of a liability, since it masks the erroneous estimate.
In-bound estimates, then, which are typically considered to be an attractive characteristic of
EI estimates, are not unambiguous benefits. We are, after all, not interested in possible esti-
mates (i.e., estimates within the [0, 1] bounds) but in correct estimates that lead to correct
inferences.14

While EI does not perform splendidly on this one example of a highly spatially correlated
data set, it would be premature to draw definitive conclusions from what we observe in a
single instance. These data exhibit spatial effects, but the spatial effects are not isolated in
this example. As we have pointed out previously, it is not likely that spatial effects will
be isolated in real data. Instead, they appear often with aggregation bias (King 1997; Cho
1998). In these data, aggregation bias is also present. The correlation between the parameter
and the regressor is −0.43. While this is not an extremely high degree of correlation, the
correlation is nonetheless present. Thus, we cannot surmise from this example what would
happen if the spatial effects were isolated. Accordingly, to assess the effect of various forms
of spatial effects on the performance of ecological inference estimators, we now turn to
some Monte Carlo experiments.

of spatial effects. Instead, if the aggregation bias diagnostics gave one the impression that aggregation bias is
not problematic in these data, King would advocate these estimates.

14One might be tempted here to compare a male stroke mortality rate of −0.065, which is impossible, with the
EI estimate of 0.009, which is possible, but wrong. In this case, it is clear that aggregation bias exists (signaled
simply from the out-of-bounds OLS estimate), and since EI is not robust to aggregation bias, one should clearly
conclude that neither EI nor OLS is providing a reasonable estimate. King (1997, p. 282) himself cites out-
of-bounds OLS estimates as clear evidence of aggregation bias and, further, acknowledges that basic EI is not
robust to violations of the aggregation bias assumption. An in-bounds estimate is not synonymous with a correct
or even reasonable estimate.
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7 Some Monte Carlo Experiments

These experiments use the results of King’s EI software both for the EI estimator itself and
for Goodman’s estimator (essentially OLS).15 In this paper, we have limited our evaluation to
OLS and the basic EI estimator and have not assessed any extensions of these estimators that
explicitly account for the forms of spatial dependence and spatial heterogeneity described
above.16 This choice follows all of the previous research examining the effects of spatial
dependence on the EI estimator.

Implementing spatial effects in simulation experiments that respect the fundamental ac-
counting identity is not as simple as one might initially believe. Keeping values within the
bounds requires some rule or procedure. In the few simulations in the literature (includ-
ing King’s), the precinct-specific values for the parameters βb

i and βw
i are drawn from a

bivariate normal distribution with predetermined means and a given covariance structure.
These draws are then converted to a truncated distribution by rejection sampling (i.e., the
draws that do not fall within the 0–1 range are not used in the subsequent estimation).
This procedure guarantees that the accounting identity is satisfied and that all values of
Ti are within the zero–one bounds. However, when modeling spatial effects, care must be
taken that the spatially transformed (autocorrelated) variates also still satisfy the accounting
identity. Since spatial autoregressive processes tend to increase the variance of the under-
lying random variable, this condition must be checked explicitly. In other words, simply
assessing that a set of random variates satisfies the truncation bounds does not guaran-
tee that spatially transformed variates derived from them will fall within those bounds as
well.

An additional complication results from explicit consideration of the spatial arrangement,
or layout, of the data. We examine two layouts, one for a regular 10 × 10 grid system
(n = 100) and the other for the arrangement of 179 countries referred to by King (2000)
(n = 179).17 These spatial layouts differ not only in the sample size but, more importantly,
in the type of connectedness that is implied. On a regular grid, using the “rook” definition
of neighbors (or, north, south, east, west), each cell has four neighbors, except for the
boundary cells. The effect of those boundary cells varies with the sample size: for a 10 × 10
grid, the average number of neighbors is 3.6, with an average (row-standardized) weight
of 0.28 (of the 100 grid cells, 64 have four neighbors, 32 have three, and four have two).
In contrast, the connectivity structure of the King neighbors is very irregular.18 While
the average number of neighbors is only slightly higher than for the rook case (4.8), and
the average weight is slightly less (0.21), this masks a high degree of underlying variability.
One observation has as many as 16 neighbors, while 13 observations have only one neighbor,
and 28 observations have only two neighbors. Controlling for all possible spatial layouts is

15All tuning parameters for the EI estimation software were kept at their default settings to avoid extra variability
in the simulations and to keep some degree of comparability with King’s results. We did, however, in the midst
of our simulations, experiment with different settings. For example, the “Esim” global variable, the number
of simulations used to generate the posterior distribution at the precinct level, is set to 100 as a default. We
experimented with a value of 1000 for this parameter, but the results were essentially the same.

16See footnote 6 for an explanation of this choice.
17King’s (1997) simulations used data sets of size n = 100 and n = 1000. He notes that his estimator performs

better for larger data sets. However, our tests with two data sets (n = 100 and n = 400) did not indicate the same
rise in performance. In any case, these results from his book are unimportant here, since King (2000) has agreed
that the modeling of spatial dependence in his book is limited and not representative of true spatial effects, and
his subsequent simulations do not indicate the sample size of his data sets or testing on data sets of different
sizes.

18He seems to be using contiguity to define neighbors.
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nearly impossible, so the two settings considered here should be considered to be illustrative
only.19

Given the highly stylized nature of the design, we attempted to minimize the standard
errors due to the simulation itself. Accordingly, we ran 1000 replications, which is four
times more than for previously reported results in the literature. We also used the same
base set of random variables in all of the spatial simulations (i.e., the spatial autoregressive
parameter was applied to the same base set of random variates). In addition, to avoid variance
instability resulting from the use of proportions/rates, each cell in the grid is constrained
to have the same population base. Finally, to ensure that there is no aggregation bias in the
simulated data, the Xi are constrained to be the same for all simulations and are generated
as uniform random variates.20

We consider two designs, a truncated spatial design and a censored spatial design. We
use these two approaches to ensure that the βi are properly truncated.21 The truncated model
consists of rejection sampling applied to the full vector of errors, ε. Unlike the recursive
unidimensional model considered by King, a “simultaneous” spatial process specifies the
complete vector of variates for all precincts, so that a precinct-by-precinct rejection sampling
is inapplicable. Only when a simulated vector of variates is obtained for which all of the εi

are in the proper range can the result be retained. To implement this in a reasonable time,
the standard error of the underlying untruncated normal distribution was lowered to 0.1.22

The results using this approach are listed in Table 2. The censored model takes a slightly
different perspective by allowing the error terms to follow a latent spatial autoregressive
process that is censored at zero and one. In other words, the vector of ε and its matching
βi are generated as before, but all parameters that are less than zero are replaced by 0.0,
and those greater than one are replaced by 1.0. While the resulting random coefficients can
no longer be considered to be truncated bivariate normal, they are spatially correlated and
satisfy the accounting identity. Arguably, this is a more realistic behavioral model for spatial
dependence and fits into a rich tradition of latent variable models. In these simulations, we
set σ = 0.2 to mimic the King setup (1997, p. 166). These results are listed in Table 3.23

In both cases, we follow King’s design as closely as possible—the βb
i and βw

i are drawn
from a truncated bivariate normal distribution by rejection sampling from an untruncated
bivariate normal with parameters, βb = βw = 0.5, and correlation coefficient, ρ = 0.3 (see
King 1997, p. 166). In the truncated case, the standard error, σb = σw = 0.1, while in the
censored case σb = σw = 0.2. Note that King’s specific choice of parameters here is partic-
ularly auspicious for subsequent estimation since both the untruncated and the truncated

19The King weights apparently were designed to mimic the arrangement of 179 countries in the world. While he
did supply us with the weights matrix, he did not, however, supply any other details on its construction or the
spatial layout of the data. Hence, we can provide no other details on his weights matrix.

20The latter feature may be unrealistic in the sense that empirical patterns for Xi show more regularity than a
uniform random variate would suggest. On the other hand, it ensures the absence of aggregation bias and allows
us to assess the specific consequences of spatial effects without the presence of other confounding circumstances.

21Note that it does not suffice to apply the spatial autoregressive transformation to truncated random variates
such as ξ . The row sum in the spatial inverse matrix ranges from 1.25 for ρ = 0.2 to 5.0 for ρ = 0.8, which
considerably increases the variance for the spatially autocorrelated variates. Without a further transformation,
the latter tend to fall frequently outside the acceptable range.

22For example, with ρ = 0.8, the rejection sampling required the generation of one or two extra sets for roughly
every third simulation. With the original standard error of 0.2, no acceptable vectors were generated for this
value of ρ with fewer than 20 attempts, which rendered the procedure impractical. This highlights the interaction
between the intrinsic variance of the underlying process and the resulting truncation.

23Note that in the censored case, it is not necessary to reduce the underlying variance to get a workable set of
simulated values; this is done here only to keep comparability.
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Table 2 Truncated model: Monte Carlo simulation results (1000 replications)

Districtwide King’s EI estimate Goodman’s regression (OLS)

βb βb
i RMSE MAE βb

i RMSE MAE
ρ βw βw

i RMSE MAE βw
i RMSE MAE

Rook weights

0.0 0.4998 0.4989 0.0155 0.0123 0.4990 0.0154 0.0122
0.5000 0.5011 0.0164 0.0130 0.5011 0.0164 0.0129

0.2 0.4997 0.4989 0.0158 0.0126 0.4990 0.0158 0.0125
0.5000 0.5010 0.0168 0.0133 0.5011 0.0167 0.0132

0.5 0.4996 0.4989 0.0178 0.0142 0.4990 0.0177 0.0141
0.5000 0.5009 0.0189 0.0150 0.5010 0.0187 0.0148

0.8 0.4990 0.4984 0.0237 0.0190 0.4984 0.0234 0.0187
0.4998 0.5007 0.0234 0.0200 0.5008 0.0248 0.0198

King weights

0.0 0.4999 0.5000 0.0110 0.0089 0.5000 0.0109 0.0088
0.5002 0.5002 0.0116 0.0093 0.5002 0.0115 0.0092

0.2 0.4999 0.5000 0.0111 0.0089 0.5000 0.0110 0.0089
0.5002 0.5001 0.0117 0.0093 0.5001 0.0116 0.0093

0.5 0.4998 0.5000 0.0119 0.0095 0.5001 0.0118 0.0095
0.5002 0.5000 0.0126 0.0100 0.5000 0.0124 0.0100

0.8 0.4995 0.5000 0.0153 0.0121 0.5000 0.0150 0.0118
0.5001 0.4996 0.0164 0.0130 0.4996 0.0161 0.0128

Note. In all cases, βb
i = βw

i = 0.5.

distribution will have the same mean. Moreover, due to the small variance, the degree of
truncation will tend to be limited.24 It is important to note as well that while our simulations
are more realistic than King’s simulations, the generation of data in this manner and to
violate only the spatial assumption remain highly stylized. Hence, we should expect that
the effects will necessarily be subtle.

In addition to the null case (ρ = 0), we considered three coefficient values for the
spatial autoregressive process to simulate low, medium, and high spatial autocorrelation
(ρ = 0.2, 0.5, and 0.8, respectively). The individual βb

i and βw
i coefficients are obtained

through a three-stage process. First, draws are made from an untruncated bivariate normal
distribution with mean zero and the covariance matrix specified above. Next, after the first
step yields a vector of “error terms,” ξ , these error terms are subsequently transformed into
a vector of spatially autoregressive errors, ε, by setting ε = (I − ρ W )−1ξ . Finally, we use
the spatially autoregressive errors to compute the precinct-specific βi coefficients by setting
βi = β + εi .

7.1 Discussion of Monte Carlo Results

Evaluating the performance of EI and OLS in the presence of spatial effects through our mul-
tiple sets of simulated data merits some special attention. In particular, unlike “traditional”

24King does not assess the possible effects from asymmetric truncation by allowing the means to differ, which is
the more interesting case. In a Voting Rights context, for example, cases are brought before the court because
of a strong prior that polarized voting exists, or that the true βb is much different from the true βw .
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Table 3 Censored model: Monte Carlo simulation results (1000 replications)

Districtwide King’s EI estimate Goodman’s regression (OLS)

βb βb
i RMSE MAE βb

i RMSE MAE
ρ βw βw

i RMSE MAE βw
i RMSE MAE

Rook weights

0.0 0.5001 0.5016 0.0303 0.0241 0.5018 0.0305 0.0243
0.5000 0.4993 0.0322 0.0257 0.4991 0.0323 0.0258

0.2 0.5009 0.5019 0.0313 0.0250 0.5019 0.0313 0.0249
0.5001 0.4991 0.0330 0.0263 0.4991 0.0330 0.0264

0.5 0.5014 0.5020 0.0339 0.0271 0.5022 0.0349 0.0278
0.5001 0.4995 0.0357 0.0286 0.4993 0.0366 0.0293

0.8 0.5031 0.5032 0.0351 0.0283 0.5036 0.0427 0.0340
0.5003 0.5002 0.0373 0.0300 0.4997 0.0447 0.0358

King weights

0.0 0.4995 0.4996 0.0195 0.0156 0.4997 0.0201 0.0159
0.4987 0.4987 0.0211 0.0168 0.4986 0.0217 0.0173

0.2 0.4995 0.4995 0.0198 0.0157 0.4997 0.0202 0.0161
0.4984 0.4985 0.0214 0.0170 0.4983 0.0219 0.0175

0.5 0.4993 0.4996 0.0207 0.0164 0.4996 0.0216 0.0171
0.4976 0.4975 0.0224 0.0179 0.4975 0.0234 0.0188

0.8 0.4993 0.4992 0.0222 0.0177 0.4998 0.0251 0.0199
0.4951 0.4956 0.0240 0.0194 0.4950 0.0275 0.0223

Note. In all cases, βb
i = βw

i = 0.5.

simulation exercises, the proper standard of reference is not unambiguous. One difference
that arises from evaluating the EI estimates in relation to the OLS estimates is that EI
reports a districtwide estimate as well as precinct-specific point estimates (the mean of
the posterior distribution) and the full distribution of the simulated posterior density. In
contrast, the Goodman estimator provides the districtwide parameter with no variation in
the precinct-specific parameters.25 This difference is worth highlighting because one can
compare either the overall estimates or, as we do, EI’s precinct-level estimates and OLS’s
(single) districtwide estimate.

In our evaluation, we considered a number of criteria. First, to provide a sense for
the effect of truncation and the sampling error of the simulations, we report the dis-
trictwide coefficients computed from the simulated “truths” for the individual precinct
parameters, βb

i and βw
i . In most of our designs, the truncated and untruncated means

should be very close, since there is no truncation effect on the mean with βb = βw = 0.5
for a symmetric distribution such as the normal distribution. The “bias” of the estima-
tors is not computed with respect to this districtwide average, however, but with respect
to each individual βi . In other words, our measure of bias is, in fact, the average er-
ror (over all precincts) between the “predicted” parameter, say, βb

i , and its simulated
value. For EI, the mean of the posterior distribution is taken as the predicted value (for
Goodman’s method, the predicted value is, of course, the same in each precinct). Estimates

25Technically, the Goodman model does provide precinct-level estimates as well. The estimate for each precinct
is simply the same as the districtwide estimate. This is the constancy assumption.
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of precision are provided by the root mean squared error (RMSE) and the mean absolute error
(MAE).26

To obtain a benchmark for the discussion of the spatial models that follows, we first
consider the results for the base case (reported as the ρ = 0 case). These are not difficult
cases because only a very small degree of heterogeneity and truncation is implied by these
parameters.27 Consequently, these samples represent fairly “stable” cases that are probably
more “homogeneous” than those encountered in actual empirical practice.28 This is con-
firmed by the “districtwide” true values listed in the second and third columns in Tables 2
and 3. In all cases, these are virtually the same as the mean for the untruncated underlying
bivariate normal distribution. For these designs, it is thus not surprising that both EI and
OLS perform very similarly in the base case.

It is well known that OLS is unbiased and that the heteroskedasticity affects only the
precision of the estimate. In our simulations, since the data were generated to have no
aggregation bias, but only spatial effects, it is unsurprising that we find essentially no
bias in our Monte Carlo simulations. Hence, we do not report the bias results in the tables.
Confirming earlier simulation results, then, we find no bias for either EI or OLS and basically
the same precision [see King (1997) for EI results and Cho (1998) for EI and OLS results].
For example, for βb

i (the truncated model with rook weights), the RMSE is 0.0155 for EI
and 0.0154 for OLS; virtually indistinguishable.

Notably, however—and previously overlooked—the RMSE increases as the degree of
spatial autocorrelation increases. In Table 2, we can see that for the truncated model (βb,
rook weights), the RMSE grows by a factor of 1.5 as the underlying spatial autocorrelation
grows to 0.8. In practice, it is difficult to assess the degree of spatial autocorrelation. Hence,
an analyst would be unsure whether the data of interest were in the realm of a low degree
of spatial autocorrelation, where the RMSE is not as large, or a high degree of spatial
autocorrelation, where the RMSE is larger and points to problems with the precision of the
estimator. In addition, in actual practice, one must also consider that spatial autocorrelation
is unlikely to occur in isolation (King 1997; Cho 1998). Spatial effects may even signal
problems with aggregation bias (Achen and Shively 1995).

Although RMSE includes both a bias component and a precision component, in our case,
since there is essentially no bias, RMSE provides practically a pure measure of precision.
The results are similar when we examine the MAE values. In our results, then, in terms of
precision, we can see that the performance of both EI and OLS begins to deteriorate when
the underlying distribution becomes more heterogeneous. It is against this base case that
we need to assess the influence of any spatial effects that are introduced into the design.

In some instances, the performance of the EI estimator degrades marginally faster as
the degree of spatial autocorrelation increases. In other cases, the performance of the OLS

26Note that we do not provide “coverage rates” for, say, an 80% confidence interval. This is a deliberate choice,
since our main point is that spatial effects affect the precision of the estimates. Since EI does not correct for
spatial autocorrelation, the size of the standard errors is, to us, not obviously useful. Instead, since EI makes no
adjustments for the increased precision, its estimates of the standard errors are based on a model that specifies
no spatial effects. How useful these uncorrected estimates may be is not a topic we explore here. We focus on
the precision of the estimator.

27For a normal distribution with a mean of 0.5 and a standard deviation of 0.2, 95% of the variates are contained
in the interval 0.1 to 0.9, leaving truncation to only true outliers. The situation is even more pronounced for a
standard deviation of 0.1.

28Indeed, one may note that in King’s one-directional, unidimensional simulations (1997), his results for high
levels of “spatial autocorrelation” are in many ways worse than the results we provide here. Our simulations
are not intended to, and do not, present the worst possible manner in which spatial effects may occur. As King
himself demonstrates, the problems can be more severe.
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estimator degrades more quickly as the degree of spatial autocorrelation increases.29 For
none of these spatial models does the performance for either estimator improve or stay
the same. In practice, an analyst will have no idea which simulated model bears a closer
resemblance to the data of interest, if either spatial model bears any resemblance to his data,
or if these spatial effects are confounded by other issues such as aggregation bias. Hence, it
is not as important to note the specifics of these models as it is to note that the performance
of both estimators deteriorates as the degree of spatial autocorrelation increases. The small
differences in performance here are overshadowed by the larger issues that arise in making
ecological inferences.

In this context of the base case, one would expect that the effect of increasing the sample
size would be an improvement in efficiency (i.e., the RMSE would decrease) for all esti-
mators across the board. In his one-directional, unidimensional results, King demonstrates
EI’s improved performance as the sample size rises from 100 to 1000. He does not revisit
this efficiency issue in his subsequent simulations (King 2000). In our analysis of this issue,
in terms relative to our base case, when we ran the same simulations for a sample size four
times as large, the overall patterns were the same. Hence, we cannot substantiate the claim
about efficiency.30

Although it is impossible fully to characterize all forms of spatial effects, these few
patterns in the performance of the two estimators in the presence of these particular spatial
effects are striking. In contrast to earlier evidence regarding the effect of spatial autocor-
relation, we find that even in the absence of aggregation bias, there is a separate effect on
the precision of the estimators, one that becomes more noticeable as the degree of spatial
autocorrelation increases. This result holds despite the highly stylized nature of our data
generation process, which is predisposed to produce subtle results. Nonetheless, in our
analysis, as the degree of spatial autocorrelation rises (from ρ = 0 to ρ = 0.8), the RMSE
and MAE rise as well. The effect is similar for the rook, queen (not reported), and King
spatial weights.31 Hence, the effect is neither unique to nor driven by the choice of weights.
Moreover, because the effect is similar for both the truncated and the censored case, the
effect cannot be attributed to either of these model designs.

7.2 Reconciling Previous Findings

Our results differ from those reported by King (1997, 2000). We might expect our results
to differ from those reported in his book (King 1997), since the data generating process for
those simulations, he now agrees, was not indicative of spatial processes (King 2000, p. 603).
However, our results differ even from his subsequent simulations (King 2000) when we em-
ploy his own weights matrix. He used this particular weights matrix to “ensure a realistic
form of multidirectionality and two-dimensionality” (King 2000, p. 603). Upon reporting

29The details are available in Tables 2 and 3. In general, the performance of the two estimators is almost the
same for the truncated model, with OLS just edging out EI. For the censored model, EI seems to outperform
OLS (most notably when ρ = 0.8). Nonetheless, the pattern of behavior is the same and both clearly degrade
as the degree of spatial autocorrelation increases. It is worth making the point again that these Monte Carlo
simulations are stylized. Consequently, the results are necessarily subtle and the pattern of behavior is more
noteworthy than the specific RMSE or MAE in each case. As we have stressed previously, spatial effects can
take many forms, and we have simulated only two specific cases here. In the only well-documented analysis of
realistic spatial effects, then, we find evidence that the precision of both EI and OLS is adversely affected by the
presence of spatial effects. Much more research must be done to assess the specific impact of all forms of spatial
effects.

30Results are available at the Political Analysis Web site.
31Results for the queen weights are available at the Political Analysis Web site.
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his results, he claimed that his subsequently reported Monte Carlo evidence “confirm[s]
conclusions from the simpler analysis presented in [his] book: Spatial autocorrelation has
only a minimal effect on model estimates and standard errors” (2000, p. 603). In short, in
his Monte Carlo experiments, the average absolute error (MAE) is approximately zero, and
the true standard deviation across the simulations is almost precisely the average of the
estimated standard errors from each simulation (2000, pp. 603–604).32 As we have men-
tioned, our evidence confirms the result regarding bias. However, our findings on precision
differ.

It would be helpful to identify the source of our discrepant findings. In this case, however,
it is impossible to identify the exact source of the discrepancy, since King’s Monte Carlo
results are difficult to navigate and interpret based on what he has reported. To be clear, there
have been two assessments by King of the role of spatial effects in ecological inference
models. His first assessment appears in his 1997 book. That analysis includes generated data
that is limited and not representative of spatial processes (Anselin 2000, O’Loughlin 2000).
In response, King (2000, p. 603) noted that “[t]hese are reasonable criticisms.” He then
reports on new simulations that are ostensibly more representative of spatial processes, but
the brevity of his report on those simulations makes it impossible for us to fully understand
the details of the simulation experiment and thus prohibits us from making meaningful
comparisons between his results and ours. Since crucial information is not reported in King
(2000) (such as what is the model being estimated, what are the parameters, what is the data
generating process?), it is difficult for us to investigate the deviations from his findings and
ours. It is clear from the reported results, however, that our Monte Carlo experiments and our
assessment, in general, are far more extensive. As just one example, we simulated different
degrees of spatial autocorrelation, thus allowing us to make claims about the performance
of estimators as this characteristic changes. King (2000) reports just one model with unclear
parameters and specification.

In summary, we find that the earlier assessments of the absence of an effect resulting
from spatial autocorrelation were too optimistic. Whether introduced in the form of a
spatial autoregressive process in the random coefficient specification or as a censoring of
an underlying latent random component, the effect exists and is significant. The effect is
limited to the precision of the estimator, since these forms of spatial autocorrelation, in
and of themselves, do not induce bias. More importantly, the effect is similar for both EI
and OLS (Cho 1998). The performance of both estimators declines as the degree of spatial
autocorrelation rises.33

32King’s discussion of his model is limited, and this creates some interpretation issues. For instance, he states that
“the true standard deviation across the simulations...” In this case, the usage of the word “true” is very confusing,
since there are several ways to interpret it. He could be referring to either the “true” variability at the precinct
level, the variability of the estimate at the precinct level, or the estimate of the variability of the estimates. We
report the variability of the EI estimates around the true value, which are controlled in the simulations. These
are not the standard errors computed by EI, which are themselves not “true” values. The only true values are
the variances of the true βb

i and βw
i , not of the estimated ones. It is unclear that King reports anything related to

the true βb
i and βw

i that were used to generate the data. Hence, we believe that our results mimic the results that
he describes.

33One may be tempted to believe that EI must perform better than OLS since OLS produces out-of-bounds
estimates. That claim may sound intuitive and simple but is, instead, quite complicated and one that has never
been substantiated. While EI always produces in-bounds estimates, these in-bounds estimates are not guaranteed
to be correct or even of the right magnitude. Relatedly, while the “constancy assumption” in the OLS model
has been widely criticized, EI incoporates an analogous “similarity assumption.” That is, while OLS constrains
all precincts to have the same parameter values, EI constrains all precincts to have similar (but not identical)
parameter values. The close relationship of these two assumptions is the root for much of the similarity between
the two estimators.
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8 Conclusion

Our results provide additional perspectives on King’s (1997, p. 94) assertion that spatial
autocorrelation does not pose difficulties for EI. We have identified another assumption (no
spatial autocorrelation) that must be met to ensure that EI estimates are problem free. The
EI model is affected by violations in this assumption, and the resulting effects when this
assumption is violated may pose problems for proper inference. In particular, the presence of
a spatial autoregressive process manifests itself as a loss of precision in ecological inference
estimators. The effect is thus similar to the standard regression context.

Second, we have demonstrated the impact of considering spatial effects that are much
richer than the unidimensional, one-directional time-series analogues examined by King
(1997) and the spatial rendition of King (2000). Although we have categorized several effects
arising from spatial heterogeneity, note that we have considered only a small subset of the
possible interactions between dependence and heterogeneity, and only in the highly stylized
situation where the effects of truncation and variance were minimal. However, even in these
artificial designs, our results suggest that spatial effects should not be ignored and deserve as
central a consideration in the EI context as in standard regression analysis. Hence, there is a
need to develop effective tests to assess spatial effects as well as to develop new models that
explicitly account for these effects. Importantly, it would seem that any information about
the “structure” of the spatial heterogeneity should be exploited before defaulting to the
“generic” assumption of random coefficient variation. Certainly, estimation methods that
are robust to the presence of various forms of heterogeneity/dependence should be explored.

For the simple designs considered here, our results are in line with earlier findings (Cho
1998) that have demonstrated the virtually identical performance of EI and the “naive”
Goodman OLS estimator. Ironically, then, the additional computational complexity of the
EI estimator contributes little in the face of spatial effects. These results hold whether the
violated assumption is the distributional assumption, the aggregation bias assumption, or
the spatial autocorrelation assumption.

We should reiterate that the simulation designs (and those considered by King) are
highly stylized and, for one, ignore the interaction between spatial effects and aggregation
bias, which may be crucially important in practice. Violations of the spatial autocorrelation
assumption may, for instance, signal problems with the aggregation bias assumption. Indeed,
it is extremely rare that these violations would not occur simultaneously. Also, we should
stress that the bivariate model that follows from the fundamental accounting identity is
rather limited for empirical practice in political analysis. While it may be appropriate for
Voting Rights court cases, it provides a highly simplified (and too simplistic) model for the
interaction between race and political behavior. Once outside the fundamental accounting
identity, a much richer set of multivariate models may be considered, for which a wide range
of spatial effects can be modeled. We argue that this is a more promising route to pursue in
terms of incorporating spatial effects into political models for ecological regression.
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