Applied Soft Computing Journal 90 (2020) 106129

Contents lists available at ScienceDirect

Applied Soft Computing Journal

journal homepage: www.elsevier.com/locate/asoc

A spatially explicit evolutionary algorithm for the spatial partitioning)
problem™ crgt
Yan Y. Liu**!, Wendy K. Tam Cho"

2 Computational Urban Sciences Group of the Computational Sciences and Engineering Division at Oak Ridge National Laboratory, 1 Bethal Valley,
P.0. Box 2008, Oak Ridge, TN 37830, United States of America

b Departments of Political Science, Statistics, Mathematics, and Asian American Studies, the College of Law, and the National Center for
Supercomputing Applications at the University of Illinois at Urbana-Champaign, 420 David Kinley Hall, 1407 W. Gregory

St., Urbana, IL 61801, United States of America

ARTICLE INFO ABSTRACT

Article history:

Received 30 May 2019

Received in revised form 20 October 2019
Accepted 22 January 2020

Available online 4 February 2020

Spatial optimization seeks optimal allocation or arrangement of spatial units under constraints such as
distance, adjacency, contiguity, and pattern. Evolutionary Algorithms (EAs) are well-known optimiza-
tion heuristics. However, classic EAs, based on a binary problem encoding and bit-operation-based
offspring operators, are spatially unaware and do not capture topological and geometric relationships.
Unsurprisingly when spatial characteristics are not explicitly considered in the design of EA operators,
that EA becomes ineffective because satisfying spatial constraints is computationally expensive. We
design and develop novel spatially explicit EA recombination operators, inspired by the path relinking
and ejection chain heuristic strategies, that implement crossover and mutation using intelligently
guided strategies in a spatially constrained decision space. Our spatial EA approach is general and slots
well into the foundational theory of evolutionary algorithms for spatial optimization. We demonstrate
improved solution quality and computational performance with a large-scale spatial partitioning

Keywords:

Combinatorial optimization
Evolutionary algorithm
Spatial optimization
Heuristics

Parallel computing

application.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Spatial optimization problems seek optimal allocation or ar-
rangement of spatial units according to some objective or mea-
sure of goodness [1]. The spatial properties embedded in the
objectives and constraints may include, but are not limited to
distance, adjacency, contiguity, containment, intersection, shape,
partition, and pattern [2]. Spatial optimization has been studied in
a variety of contexts, dating back to the 1800s with explorations
of efficient land use activity [3]. More recent research includes

* This manuscript has been authored in part by UT-Battelle, LLC, under
contract DE-AC05-000R22725 with the US Department of Energy (DOE). The
publisher, by accepting the article for publication, acknowledges that the US
government retains a nonexclusive, paid-up, irrevocable, worldwide license to
publish or reproduce the published form of this manuscript, or allow others
to do so, for US government purposes. DOE will provide public access to these
results of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

* Corresponding author.

E-mail addresses: yanliu@ornl.gov (Y.Y. Liu), wendycho@illinois.edu
(W.K.T. Cho).

1 Liw's work is supported in part by the Laboratory Directed Research and De-
velopment Program of Oak Ridge National Laboratory, managed by UT-Battelle,
LLC, for the US Department of Energy under contract DE-AC05-000R22725.

https://doi.org/10.1016/j.as0c.2020.106129
1568-4946/© 2020 Elsevier B.V. All rights reserved.

studies of location models [4-7], coverage problems [8-10], zon-
ing and spatial aggregation [11,12], and spatial characteristics in
land cover classification [13-15]. To be sure, research in spa-
tial optimization is lively and generates significant technical and
substantive interest across an array of different areas.

Many problems in spatial optimization are computationally
challenging and even computationally intractable (i.e., NP-Hard
[16,17]). Examples include the regionalization problem that aims
to group spatial units into a small set of regions that satisfy
optimization objectives (e.g., the p-region problem [18] and the
spatial clustering-based regionalization [12]), the spatial zoning
problem that seeks to partition spatial units into a set of contigu-
ous zones [19], the maximal covering location problem where the
coverage of a set of facilities is maximized [8], the spatial alloca-
tion problem that seeks to allocate specific activities to particular
spatial units [20], and the p-hub location problem that locates
p transportation hubs and allocates demand to specific hubs to
minimize total transportation costs [21]. With the increased size
and dimension of spatial data, the associated spatial optimization
problem becomes more intricate, characterized by massive de-
cision spaces that eclipse the capabilities of exact algorithms to
identify optimal solutions. Given these trends, continued success
in deploying future spatial optimization applications requires
innovation in spatial optimization methods.

https://doi.org/10.1016/j.asoc.2020.106129
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2020.106129&domain=pdf
http://energy.gov/downloads/doe-public-access-plan
mailto:yanliu@ornl.gov
mailto:wendycho@illinois.edu
https://doi.org/10.1016/j.asoc.2020.106129

2 Y.Y. Liu and W.K.T. Cho / Applied Soft Computing Journal 90 (2020) 106129

One path for solving difficult optimization problems is via
heuristics and soft computing techniques such as Evolutionary
Algorithms (EAs), which are well-known metaheuristics inspired
by natural selection [22]. EAs mimic an evolutionary process that
encodes a problem as a chromosome and generates an initial
population of individual solutions with random chromosomes.
Through randomized EA operators (e.g., selection, crossover, mu-
tation, and replacement), the population evolves based on a “sur-
vival of the fittest” rule [23,24]. This route has been successful
for many large-scale optimization problems. However, complex
spatial optimization problems pose interesting and non-trivial
challenges, necessitating novel strategies that incorporate spatial
elements into the EA operators [25].

Xiao [1] categorized problems in spatial optimization as ei-
ther assignment or partition problems, with or without spatial
constraints. Among the four categories, we investigate partition
problems with spatial constraints such as contiguity (hereafter
spatial partitioning), where arriving at different partitions neces-
sarily involves reassignment of neighboring units that satisfies
the contiguity constraint. A particular search complication that
arises in these partitioning problems is that considerations of
spatially defined locality and adjacency have a direct and explicit
effect on solution feasibility. While non-spatial set partitioning
problems involve the unconstrained combinatorial construction
of sets, the system of spatial dependency among the decision
variables in spatial partitioning redefines solution feasibility. One
consequence is that the decision space becomes “patchy”, with
feasible and infeasible solution areas juxtaposed. In addition, as
the problem size grows, the disparity between the number of
feasible and infeasible partitions grows, with infeasible partitions
quickly eclipsing the feasible ones.

Although randomized components powerfully enable EA per-
formance, the classic operations that generate new solutions by
exchanging bits on linearly-encoded chromosome are ineffec-
tive in traversing spatially-constrained decision spaces because
they do not capture or preserve the variable interdependencies
introduced by the spatial constraints [26]. This issue becomes
even more poignant for large applications that have increasingly
disparate proportions of infeasible solutions. In addition, conven-
tional strategies such as designing a penalty function for spatial
constraint handling are also unlikely to be effective since they
expend enormous computational effort wading into infeasible
regions rather than avoiding them all together.

While it is possible, it would be highly unusual that a spatial
partitioning problem could be solved by conventional EAs with
linear recombination operators [25]. One possible route is to use
the classic linearly-coded non-spatial operators to generate new
solutions, and then to subsequently repair the broken spatial
relationships. While this strategy may work on small problem
instances, it becomes computationally prohibitive as the problem
size increases and thus devolves into a random search for feasible
solutions rather than a heuristic that improves solution quality.
We argue that EA recombination operators, including crossover
and mutation, must not only be spatially aware, but also spatially
explicit in exploring the spatially constrained decision space. Such
intelligently guided constructive methods are more promising
than repair methods, particularly for large problem sizes.

We propose a novel spatial evolutionary algorithm that im-
plements spatially explicit crossover and mutation operations via
an adaptation of the path relinking and ejection chain heuris-
tics. Our proposed EA preserves solution feasibility and thus
reduces wasted computation exploring infeasible solution re-
gions. Consequently, our EA is able to improve solution quality
on large problem instances and maintain desirable computational
performance.

Since spatial heuristics are incorporated into the EA operators,
the algorithm falls into the class of memetic algorithms [27] or

hybrid EAs [28]. Our computational approach also falls within
the realm of soft computing that involves the combination of
multiple methods (often involving evolutionary computing or
swarm intelligence algorithms) that each bring a helpful element
for achieving a complex goal [29]. Soft computing approaches
have driven advances across a variety of different scientific do-
mains, including portfolio optimization, rainfall prediction, traffic
flow, and image processing [30-34]. Our approach is developed
based on a general definition of the spatial partitioning problem.
We solve a specific spatial zoning application to demonstrate
the algorithmic and computational performance of the proposed
approach with both sequential and parallel implementations.

2. Literature review

The EA approach to spatial optimization has been an ac-
tive area of research in geography for decades. Although EAs
are recognized as a general heuristic for problem-solving and
have been successfully employed in various spatial optimiza-
tion problems [35,36], how to align EA encoding and operations
with an application’s inherent data idiosyncrasies [37] has re-
mained a challenge for achieving desirable performance. For
example, Hosage and Goodchild [25] found that the computa-
tional efficiency of EAs lags other algorithms for solving the
p-median problem, commenting that “one would expect some-
what different performance if the coding order preserved spatial
relationships than if it were essentially random”.

Adapting heuristics to function efficiently with spatial data
has been a consistent effort in geographic analysis research.
Openshaw [38] first introduced a contiguity-preserving method
that generates new solutions by morphing only on zone bound-
aries to study geospatial partitioning applications. Based on this
method, Openshaw and Rao [39] developed tabu and simu-
lated annealing heuristic methods for census zoning. Tong et al.
[40] implemented a spatial genetic algorithm for the maximum
coverage problem with a specialized crossover procedure that
avoids spatial clusters and promotes spatial dispersion. Xiao et al.
[41] designed a spatial multi-objective EA for the site search
problem by devising location-based operators to move a subset
of units to a randomly identified location while morph-based
operators identified moveable units between contiguous sites
and “morphed” their site assignment. Various heuristics have
been developed for spatial optimization by the geocomputation
community [42].

In these applications, one of three main strategies has been
employed to enforce spatial contiguity. First, solutions are gen-
erated freely without spatial considerations. The non-contiguous
solutions are then discarded [43,44]. While this strategy is realiz-
able, it is impractical for large applications where non-contiguous
solutions far outnumber contiguous ones. Second, one generates
solutions freely, and then repairs the broken spatial relation-
ships. Again, while this strategy may work on small problem
instances, it becomes computationally prohibitive as the problem
size increases. Lastly, contiguity can be enforced by creating only
contiguous aggregations. This approach is the most promising and
has been explored by a number of scholars. Cova and Church
[45] maintain contiguity via a series of math inequalities using
1D and 2D hamming distances to represent the principle that no
spatial unit can be chosen before a unit closer to a reference unit
is chosen. Cleverly, the hamming distance is defined through a di-
rectional spatial relation between a cell and its neighbors toward
the reference site. This representation permits a mixed integer
programming (MIP) system to make implicit spatial neighbor-
hood moves via branching that is based on distance. Using a
similar representation, Williams [46] addressed the exact conti-
guity constraint for a vector-based problem formulation. Shirabe

Y.Y. Liu and W.K.T. Cho / Applied Soft Computing Journal 90 (2020) 106129 3

[47] then optimized the contiguity representation for integer
programming in a way that reduces the search cost for linear
solvers. Shirabe [48] and Murray et al. [49] conceptualized unit
connectivity as a network and defined contiguity to be a classic
network flow problem, in which a connected graph allows the
selection of paths from source to sink.

While a mathematical programming solution to contiguity-
constrained spatial partitioning needs to address how to best
represent and incorporate the contiguity constraint, heuristic so-
lutions need to consider contiguity explicitly in neighborhood
search functions. In this quest, one could introduce a penalty
function as a general solution, though as Runarsson and Yao
[50] point out, a penalty function is both hard to define and to
make efficient. Instead, existing efforts devise specialized routines
to satisfy contiguity. For example, in their spatial scanner that
searches for clusters in a map, Izakian and Pedrycz [51] designed
a particle swarm optimization algorithm that checked the con-
tiguity of each cluster. King et al. [52] designed a specialized
geo-graph data structure. While their formulation improved a
single contiguity check, overall improvement was limited because
of the significant computational performance penalty imposed by
the need to perform this check at every EA iteration. Indeed, Liu
et al. [19] improved efficiency by two orders of magnitude by
forcing contiguity in initial solutions and requiring contiguity
checking only in solution updates.

To be sure, our goal is not simply to incorporate spatially
aware operators, but to do so in a computationally efficient
manner that will scale with problem size. In this pursuit, scala-
bility is most promisingly fostered by avoiding spatially infeasible
solutions with carefully designed operators that preserve spatial
constraints.

3. Methodology

Our main observation is that a failure to recognize and incor-
porate spatial relationships and constraints significantly degrades
the performance of EA operators. In this section, we start with
a mixed integer programming (MIP) formulation of a general-
ized form of the spatial partitioning problem constrained by
contiguity. We highlight how the lack of spatial awareness in con-
ventional EA operators creates computational issues. An avenue
to overcome these limitations is then proposed by devising new
EA operators that incorporate spatially explicit operations.

The Specification of the Spatial Partitioning Problem

Problem Statement

Given n spatial units, partition the n units into k disjoint zones
that minimize a defined objective function and satisfy a set
of spatial and non-spatial constraints, in which the contiguity
constraint requires all k zones and all of the units in each of
the k zones to be connected.

A Mathematical Formulation

I: set of spatial units;

A: set of adjacent unit pairs;
K: set of zones;

n: number of units in zone k;

1 if unit i is assigned to zone k

X = {Xi} : Xk = { 0 otherwise

Yijk: flow from unit i to unit j for zone k

~_) 1 ifunitiis the hub of zone k
Wik =1 0 otherwise

Objective: min f(x)
Constraints:
3 vie— Y vie=mwi—xe Vkek Yiel (1)
Jl(.j)eA J1G.0) €A
> Y < (me— 1) x Vkek, Viel (2)
jlG.ieA
D xu=1 Viel (3)
keK
Z wik =1 VkeK (4)
iei
ax<b (5)
Xk, wix € {0, 1} VkeK,Viel (6)

Yijk = 0 VkeK,V(i,j)eA

(7)

The above MIP formulation is a variation of Shirabe [48], which
defines the contiguity for each partition as a network flow from
all of the spatial units in each zone to their zone hub that receives
the flow. The objective function is a weighted sum of spatial and
non-spatial objectives. For instance, if the partitioning problem
considers weight balancing among zones, the objective function
can minimize the weight difference. Constraint (1) requires that
the difference of flow into and out of a unit i must be (n, — 1).
This means that if unit i is the hub of zone k, the flow traverses
each unit in the zone exactly once. Otherwise, this constraint
has no effect. Constraint (2) ensures that no unit is visited twice.
Constraint (3) guarantees that each unit is a member of one and
only one zone. Constraint (4) guarantees that each zone has only
one hub. These four constraints together ensure that all of the
units are partitioned into exactly k contiguous zones. Constraint
(5) encompasses all other non-spatial constraints. While unit
assignment is discrete (Constraint (6)), the flow is formulated as
a continuous variable (Constraint (7)). We can also see that this
problem is computationally intractable since Constraints (1) and
(2) generate a number of inequalities that increases exponentially
with the number of units.

It is worth clarifying that the spatial partitioning problem is
similar to, but distinct from, both the graph partitioning problem
as well as the k-means clustering problem [16]. While the graph
partitioning problem also seeks to balance aggregated weights
among the k partitions, it also requires the edge weights across
the partitions to be minimized, but does not enforce contiguity.
Spatial partitioning is also similar to the k-means clustering prob-
lem [53], but the decision space search is based on the adjacency
graph, instead of on units and distance.

The above network flow abstraction provides a mathematical
interface for an MIP solver. For heuristic solutions, however,
such a flow definition is not necessary because the contiguity
constraint can be handled with a penalty function or enforced
within the neighborhood search routine. An EA solver typically
encodes a partition solution into a linear array that is indexed by
spatial units, {x;|x; € I}, where the zone index is the value of
each element. A fitness function captures the objective function.
If a penalty function is defined to handle infeasible solutions
that violate any of the constraints, the fitness function would be
different from the objective function. Alternatively, the fitness
and objective functions can be identical, and one can define a
separate unfitness function. New solutions can then be generated
using the crossover and mutation operators in each EA iteration.
The evaluation of new solutions checks all of the constraints and
returns a score for each solution. A replacement strategy uses
this score (and the value of the unfitness function, if defined) to
select a subset of the population for possible replacement. Fig. 1

4 Y.Y. Liu and W.K.T. Cho / Applied Soft Computing Journal 90 (2020) 106129

Encoding: =
Chromosome

population initialization;

do
parent solution selection;
crossover;

I EE—

mutation;

fitness evaluation;
replacement;
while stopping criteria are not met;
outputting the best solution found.

[E— E—

Fig. 1. A general evolutionary algorithm (EA) for spatial partitioning.

illustrates a general EA approach. The rest of the paper describes
the limitations of the conventional crossover and mutation in
solving the spatial partitioning problem and proposes new spatial
crossover and mutation operators.

3.1. Satisfying spatial constraints

We begin with a simple illustration to demonstrate how a con-
tiguity requirement alters the search of the decision space for the
classic 1-bit EA mutation operator. For ease of illustration, we use
araster representation of the spatial variables. Our proposed algo-
rithm applies to both vector- and raster-based problems since we
adopt an adjacency graph structure to represent neighborhood,
which generalizes the adjacency of spatial objects of both regular
(e.g., raster) and irregular shapes. In this example, the adjacency
is rook-based, which means that if two units are connected by
only a point (queen connectivity), then they are not considered
connected.

In Fig. 2, the leftmost figure shows nine spatial units parti-
tioned into three contiguous zones. Using a classic 1-bit mutation,
the new solutions that result from mutating a single cell are
shown in the middle figure. The number of possibilities is 2 x
9 = 18, because each cell can be re-assigned to either of the
other two zones. However, note that mutating cell (1, 1) breaks
contiguity and necessitates a repair operator to restore contiguity.
The rightmost figure in Fig. 2 demonstrates a repair scenario.
First, cell (1, 2) switches from yellow to blue. The repair operator
then connects it to the existing blue zone, {(3, 3)}, by identifying
a route between them and re-assigning the cells on that route to
the blue zone while maintaining the other two zones. The arrows
show possible repair paths. Note that the route (1, 1) — (2, 1) —
(3,1) — (3, 2) is not possible because it eliminates the yellow
zone. Similarly, the route (2, 2) — (2, 3) is not possible because
it splits the green zone. As we can see, repairing non-contiguous
solutions is computationally costly, even for a simple mutation
operator.

3.2. Limitations of EA crossover operators

Classic linear EA operators have two main drawbacks. First,
even in an unconstrained decision space, the search space de-
rived from linear recombination is smaller than the enumerable
possibilities [54]. Hence, these operators limit and may miss
feasible search regions. Second, since these recombination op-
erators are spatially unaware, they may generate solutions that

violate the spatial constraints. These solutions would either be
discarded, leading to poor efficiency, or would be repaired, which
is non-trivial and computationally expensive.

Fig. 3 illustrates these issues with two commonly employed
crossover operators. The first, the classic linear crossover using a
single cutpoint, is shown in the upper diagram of Fig. 3. Here, the
two parent solutions are shown on the left as 2D and 1D encoded
(chromosome) views. After a cutpoint is chosen, the crossover
generates two new solutions, shown on the right, by swapping
the second part of one chromosome and attaching it to the first
part of the other chromosome. However, since neither of the two
new solutions is contiguous, they are both infeasible.

The bottom diagram in Fig. 3 illustrates a spatially-aware
crossover operator that overlaps two solutions and randomly
reassigns the resulting subdivisions into contiguous zones [1]. A
subdivision is identified with a unique (zonel, zone2) label which
denotes a cell’s zone assignment from the two parent solutions.
Ideally, the favorable attributes from both parent solutions are
preserved, though this is not guaranteed as we can see from
the subdivisions shown in the diagram. In the extreme case,
the overlap creates 9 subdivisions, which results in no progress
since the new problem is identical in complexity to the original
problem. Moreover, it is not clear how a random graph cut can
be specified to preserve and propagate favorable subdivisions.
Despite these drawbacks, however, a significant benefit of the
overlap crossover remains—it can create a search space of size
at least 3> — 2 = 25 (by taking the largest three subdivisions
as starting zones and parceling out the remaining three cells,
but subtracting the two existing solutions), which is a significant
improvement over the classic EA crossover.

3.3. Spatial recombination approach

These examples highlight that an important component has
been missing from the extant EA spatial recombination opera-
tors. In particular, they do not consider spatial characteristics
during the new solution generation phase. Spatial recombination
operators must transform the spatial characteristics into quan-
tifiable measures that direct the decision space search. This is
akin to incorporating domain knowledge into heuristics. The main
difference is that spatial characteristics require an integrated
framework for incorporating spatial elements while maintaining
the efficiency of each EA iteration. In this direction, Xiao [1] made
an initial effort by integrating graph theoretic components to
categorize spatial optimization problems. This effort needs to be
further extended, and more importantly, must be systematic.

We propose a Spatially Explicit Evolutionary Computation
(SEEC) approach that adheres to the basic structure of EA re-
combination procedures and scales to large problem instances.
We represent spatial relationships using graph data structures,
on which we design a chain of local moves that collectively
comprise a large disturbance in the search neighborhood. Chained
moves are desirable since a chain, which is tied on either end to
parent solutions, allows one to design globally large, but locally
incremental moves, within the search space. The length of the
chain may be adjusted to permit a controlled but sufficiently large
move to make an impact. Auspiciously, chained moves can be
seen as a generalization of the mutation and crossover operators
in EAs. A mutation operator can be designed as a series of chained
moves where the chain, at both ends, is anchored to a single
parent solution. A crossover operator can be designed as a set of
chained moves that comprise a “walk” from one parent solution
to a different parent solution. The movement along this chain
generates a series of intermediate or child solutions.

Coupling randomization with a chaining mechanism provides
a constructive method for designing spatial recombination strate-
gies that incorporate spatial neighborhoods and chaining on

Y.Y. Liu and W.K.T. Cho / Applied Soft Computing Journal 90 (2020) 106129 5

1 2 3 1
1 11 0
2 20 1
3 30 1

(@)

3 1 2 3
1 1 —0—]

1 2 4

1 3 v

(b) (c)

Fig. 2. Search Space of Mutation for Spatial Optimization Problems (in a Rook Neighborhood). Subfigure (a) is a solution for 9 spatial variables on a 2D raster layout.
Subfigure (b) shows the number of mutable possibilities for each cell. Subfigure (c) illustrates search paths needed to repair a mutation operation.

Linear crossover: 2D and 1D view

* Cut point

Overlap:

Fig. 3. Limitations of a Classic EA Crossover. The upper diagrams illustrate a linear recombination crossover. The lower diagram illustrates an overlap-based crossover.

graphs. This observation inspires the design of the spatial cross-
over and mutation operators in this paper, which were inspired
by two well-established heuristic methods, path relinking and
ejection chain. Detailed description of these two methods in an
operations research context can be found in [55,56], both of
which embody the chaining concept to efficiently and effectively
solve large combinatorial (non-spatial) optimization problems.

3.4. Adapting path relinking and ejection chain

A path relinking process begins by identifying two solutions,
an initial (or source) solution, S, and a reference (or target)
solution, T. A path that links these two solutions transforms the
source solution to the target solution. The hope is that some-
where along the path (in the neighboring space) lie new and
better solutions that are a mix of elements found in S and T. These
moves can be designed adaptively to improve the performance
of the heuristic. The path links multiple random and purposeful
moves, where each move is an incremental change from the pre-
vious state. Path length is a function of solution distance from S to
T, which can be defined for non-spatial problems as the number
of variables where the two parent solutions have different values.
At each step, a neighborhood function randomly identifies a local
move. With each step forward, the distance is reduced along the
relinking path, reaching zero when the relinking is complete. The
spatial adaptation of path relinking as the crossover operator in
EA is illustrated in Fig. 4.

An ejection chain consists of a series of moves originating
from one solution to generate multiple new solutions. Each move
“ejects” an assignment of a problem variable to the next variable.
This type of ejection forms a chain that can be either cyclic or
acyclic. An ejection chain is a generalization of local neighborhood
functions such as shift (chain length = 1) and swap (chain length
= 2). Non-spatial or spatial considerations may be utilized to
determine the chain length and the units to eject in each move.

Adapting general path relinking and ejection chain principles
into a spatial context is not straightforward and must incorporate
various strategies. Solution distance, which is often defined as the
number of alleles with different values between two solutions, is
not applicable in spatial configurations because spatial partitions
differ in their partition shape. Zones with the same shape but
different zone indices are identical but would be considered
different in a chromosome encoding. For this reason, while a
path relinking process can surely transform one chromosome to
another with bit exchanges, spatial constraints such as contiguity,
containment, or shape, may shorten, lengthen, or even block the
path. The design of spatial recombination operators is, thus, sig-
nificantly more complex than the classic crossover and mutation,
or conventional path relinking and basic ejection chain methods.

3.5. Spatial crossover through path relinking

Fig. 4 shows a simple partitioning problem with a contiguity
constraint and illustrates the steps in our path relinking-based

source solution, S

Y.Y. Liu and W.K.T. Cho / Applied Soft Computing Journal 90 (2020) 106129

YY YY GY | GG
Y
YY YR GR GG R
BB BR RR | RG G
BB BB RB | RG B G

target solution, T overlap cell zone labels, s+t

candidate sets, C;

(@)
R |WE
R G G
B | G B | G
movement of C, toward movement of C, toward
target solution, T target solution, T
(d) (e)

(b) (©)

G

G

movement of C, toward
target solution, T

(f) Q)

movement of C; toward
target solution, T

Fig. 4. Illustration of PRCRX, a spatial path relinking-based crossover operator.

crossover (PRCRX) algorithm. The example problem partitions 4
contiguous zones on a 4 x 4 grid, where each cell is a problem
variable. Subfigure (a) shows two parent solutions. The solution
on the left is the source solution, S, while the solution on the right
is the target solution, T. The colors represent different zones. We
first “overlap” these two solutions (shown in subfigure (b)), and
assign a zone label, s o t, to each cell, where s is the cell’s zone
assignment (here, representing the cell color) in S, and t is the
zone assignment in T. Adjacent cells with the same zone label
form a group or set of connected components. In the illustra-
tion, there are 10 groups (YY, GY, GG, YR, GR, BB, BR, RR, RG,
and RB). Adjacent groups will have different zone labels, while
non-adjacent groups may have the same zone label.

For the k-partition problem, we next pick k seed groups, where
each group, G;, has a unique target zone label, t. If they exist, we
could simply pick the groups with zone label zez, forz =1, ..., k.
The solution distance is defined to be the difference between the
total number of cells and the number of cells in the k seed groups.
Here, since there are 16 total cells and 9 cells in the 4 seed groups,
(3YY, 2 GG, 3 BB, 1 RR), the solution distance is 16 —9 = 7. These
7 cells (shown with their target solution label, t, and outlined
with a black border in Fig. 4(c)), will mutate from their zone in
the source solution to their zone in the target solution on the
“walk” from the source solution to the target solution. The cells
with a common label, t, form a candidate set, C;. Here, there are
4 candidate sets, Cy (consisting of the cell with label GY), Cg
(consisting of the 3 cells with labels YR, GR, or BR), C; (consisting
of the 2 cells with label RG), and Cp (consisting of the cell with
label RB). For any zone label, t, the union of the candidate set, C;
and the seed group, G, is the set of all cells in the target solution
with label ¢, i.e,, C; U G, = T;. In Fig. 4(c), we can quickly see
the cardinality of the candidate sets: |Cy| = 1, |Gr| = 3, |G| =
1, |Csl = 2.

Definition. The solution distance, d, between the source
solution, S, and the target solution, T, is defined as d =

K K
2221 |CZ| = Zz(:1 |TZ - Gz|-

We may begin the relinking process between the two solutions
by first choosing a particular source zone, i.e. a set of units that
share the same zone label, s. In each move, or step of the path, if a
cell is converted from zone s to zone t, the solution distance, d, is
reduced by 1. Fig. 4(d-f) provide an example of a path relinking

process that morphs the source solution to the target solution.
To move from subfigure (c) to subfigure (d), we convert all of
the cells labeled “Y” to the yellow zone. To move to the solution
shown in subfigure (e), the cells labeled “R” are converted to
the red zone. To obtain subfigure (f), the cells labeled “B” are
converted to the blue zone. Finally, we convert the cells labeled
“G” to the green zone, which completes the path. Here, this path
of length 4 travels a distance of 7 and generates 4 intermediate
solutions.

Notice that there are many ways in which the path may be
constructed. One could, alternatively, move each candidate cell
individually, generating 7 intermediate solutions (6 new). Or,
as long as each move does not violate the spatial constraints,
we could build a path with varying step sizes. The path length
is flexible, but constrained by the number of available mutable
candidate cells. It is possible that a particular order of candidate
set/unit visits may not be viable, but this does not pose an
issue since the purpose of the walk is to generate intermediate
solutions, not necessarily to end at solution T.

In the construction of any path, an important consideration is
to properly deliberate seed groups before the relinking process
begins to avoid the unnecessary computation that arises from
generating infeasible intermediate solutions. For example, recall
that when the k seed groups were created, we chose those groups
with identical s and t zone labels. This is one of a set of possible
choices. We could have chosen any s e t label where the k seed
groups have k unique s and k unique ¢t labels. However, as Fig. 5
illustrates, there is not always a unique zone labeling in the
overlap solution. If a unique zone labeling for both S and T does
not exist, the two source zones will merge as we expand the
groups, G;, because there are at least two seed groups that share a
source zone. Moreover, in the expansion of the two seed groups to
target zones, the fitness of the intermediate solutions is likely to
be worse. Accordingly, in our implementation, we seek to identify
unique zone labelings and to minimize groups with the same
source zone labels. Another complication that may arise is that a
violation of the contiguity constraint may prevent the completion
of a path. Fig. 6 illustrates that if a group, G;, or units in C; are
poorly selected, it may be impossible to expand G;.

It is difficult to know a priori whether a seed grouping or a
particular selection will lead to one of these problematic scenar-
ios. This phenomenon affects the search space size, but the effect

Y.Y. Liu and W.K.T. Cho / Applied Soft Computing Journal 90 (2020) 106129 7

1 2 1= IR =]t
3 2 3 3-2 | 3-3
Partition S Partition T Overlap

Fig. 5. Considerations for Zone Labeling. Two seed groupings with unique t labels are possible: (1e1,3e2,3e3) or (21,3 e2, 3 e 3). However, since neither has
unique S labels, the expansion to T zones with any of the two seed groupings has two undesirable effects. First, zone 1 and 2 in partition S will eventually merge
unless the expansion is terminated early. Second, zone 3 in S cannot be expanded or inappropriately expands both zone 2 and 3 in T.

2 2-2

1 1 3 1-1 | 12 | 1-3

3 3-2
Partition S Partition T Overlap

Fig. 6. Seed Group Selection Constrained by Source Zone Contiguity. The selection of the yellow seed groups makes it impossible to maintain the contiguity of source
zone 1. The expansion of group G,(2 e 2) to group G,(1 e 2) disconnects source zone 1. An appropriate zone labeling would select G,(1 e 2) as the seed group.

on fitness improvement is unknown. Furthermore, sophisticated
algorithms for preventing such scenarios may be too costly to
compute. Our current implementation detects and avoids moves
that violate the contiguity constraint. If these are all the possible
candidate moves, the relinking process is simply terminated.
Other implementations are possible and can be flexibly designed.

3.6. Spatial mutation through ejection chain

ECMUT (ejection chain-based mutation) builds on a previous
spatial mutation operator [19] by generalizing the chained mu-
tation steps into the ejection chain heuristic framework [57]. To
transform a general ejection chain to one that is spatially ex-
plicit, we need to specify a spatial neighborhood function, which
could be, for example, defined by a traversal that proceeds along
adjacent vertices.

Notice that ejection chain-based mutation has an advantage
over the location-based morph spatial design [1]. The drawback
of the latter is that, while the new area is able to contain the
shape of the units, variable interdependencies are not preserved.
Ejection chain-based mutation, on the other hand, preserves spa-
tial dependencies since the exchange of unit assignment occurs
among neighboring units.

Fig. 7 provides an illustration of the ECMUT process. Here,
the ejection chain is cyclic, with the cycle (yellow — blue —
red — green —), which returns to yellow after green. Subfigure
(a) shows a parent solution with 4 colored zones. At each step
of the chain, a random set of contiguous cells from one zone is
moved or “ejected” to its neighboring zone. Since the zone order
is yellow — blue — red — green —, we first randomly move
selected yellow border cells (subfigure (b)), then blue border cells
(subfigure (c)), then red border cells (subfigure (d)), and finally
green border cells (subfigure (e)), to complete a cycle. Each of the
four intermediate solutions shown in subfigures (b)-(e) is a valid
solution that is considered at the EA replacement phase.

4. The PRCRX and ECMUT algorithms

In graph terminology, the problem of partitioning n spatial
units into k disjoint but contiguous zones is equivalent to finding

k disjoint connected components on the adjacency graph that
cover all n vertices. In our SEEC implementation, both rook and
queen adjacency are supported. Rook adjacency leads to a clearly
planar graph while queen adjacency may not lead to a planar
graph. We employ a chromosome encoding for solutions and
groups with operations that rely on the adjacency graph and its
associated graph operations.

4.1. Spatial crossover (PRCRX) algorithm

The PRCRX spatial crossover method has the following char-
acteristics.

e The overlap (with its associated unique zone labeling) cre-
ates a set of connected components that mix the spatial
configuration of two parent solutions. Overlapped groups
serve as the basic unit for crossover recombination.

e The seeding of k groups defines the solution distance, which
is the maximum path length. Which k groups should be
selected as seeds is a question whose answer is closely
related to the maintenance of spatial constraints and the
search paths that lead to improved fitness.

e Group expansion, which is based on the selection of adjacent
units in candidate sets, transforms the source solution to the
target solution.

e The relinking path is a transformation of the source zone
into the intermediate solutions. The mutable units chosen
for expansion are determined by the fitness improvement
of these intermediate solutions. Here, contiguity is enforced
to avoid costly repair operations.

e The possibility of generating different and new solutions lies
in the flexibility of choosing both different candidate sets as
well as different units in these sets at different steps of the
path.

e Randomization is invoked at many stages, including group
seeding, the ordering of the candidate sets, and the selection
of the adjacent candidate unit.

(@) (b)

Fig. 7.

Algorithm 1 A General Overlap Operation.

1: function overLAP(U, S, T)

2: for u e U do

3 i< S[u]

4: j < Tlul > zone assignment in the two solutions
5: Xi.j <~ X,'_j U {U}

6 return {X;;|X;; # 0} > return the overlap set

The path relinking process has three primary steps: overlap-
ping, group seeding, and path building. Algorithm 1 outlines a
general overlap algorithm that applies to all combinatorial chro-
mosome encoding optimization problems. It returns the overlap,
X, as a collection of group sets with a time complexity of O(n).
However, since a group in X is indexed using a zone label, it does
not differentiate two groups with the same zone label, which is
possible when two zones from S and T intersect and result in
multiple connected components.

Algorithm 2 modifies the basic overlap operator to be spatially
explicit. This algorithm is based on the well-known connected
component labeling algorithm [58], but has been adapted to
the graph representation of the problem. The algorithm applies
breadth-first search (BFS) and returns the overlap, G, and its
chromosome encoding, X, where X|[j] is the group assignment
of unit j. The time complexity is O(m + n), where m is the
number of edges on the adjacency graph. For planar graphs, mis a
constant factor of n, according to Euler’s Formula. Other efficient
implementations may use the Union-Find algorithm [58] within
O(na(n)), where « is a very slow-growing inverse of the rapidly
increasing Ackermann function.

The group seeding step appropriately selects k seed groups
from {G[i],i =1, ..., 1}, where [is the number of groups derived
from X. The solution distance between partition S and T is [— k.
The overlap algorithm creates at least k, and at most n groups. If
the k seed groups are small in size such that they do not comprise
many units, the solution distance will be large. In this case, the
path building process is computationally costly. If the k selected
seed groups are large in size, the number of available moves
is limited and consequently less likely to generate desirable so-
lutions along the path. This issue is ameliorated in large scale
problems. From our empirical analysis, we find that selecting k
large seed groups with unique zone labeling, while as effective
as random group selection, is more efficient because the solution
distance is shorter. Finally, the seeding step returns seed groups,
G¢, and their corresponding candidate sets, C;, fort =1, ..., k.

Once seed groups have been determined, we begin the path
building process. Algorithm 3 presents a general path relinking
algorithm based on the overlap of two solutions. It applies to
non-spatial problems through the expansion of the G; groups and
the associated update to the source solution. New solutions are
generated by changing a randomly selected unit in C; to the as-
signed value of G; variables. Without modification, this algorithm
applies to set partitioning problems. With modifications to how
C; is constructed, the algorithm can be applied to assignment

(©)

Y.Y. Liu and W.K.T. Cho / Applied Soft Computing Journal 90 (2020) 106129

(d) (€)

Illustration of Ejection Chain Mutation (ECMUT).

problems without the partition requirement. In this way, the
coupling of overlapping and path relinking (or ejection chain)
provides a new EA crossover operator.

Notice that our algorithm expands the G; groups unit by unit,
not group by group. Since the unit is the finest level of granularity,
adapting to expand an arbitrary number of mutable units in G
for a single movement is straightforward. There is a trade off.
Expanding a group (i.e., a set of units) is more efficient because
the number of solution evaluation steps (at line 16) is reduced.
However, unit level expansion permits greater exploration of the
search space.

Algorithm 4 adapts the general path relinking algorithm to a
spatial path relinking algorithm. In Algorithm 3, while the FLIP()
function may produce disconnected components, in Algorithm
4, this issue is bypassed by building paths based on the spa-
tial relationships represented on the adjacency graph and graph
search methods. It conducts seed group expansion on neighboring
candidate units and preserves contiguity by maintaining a second
adjacency graph for the zone boundary units.

As illustrated in Fig. 6, at the time of seed group expansion,
we must ensure that the addition of a mutable unit does not
disconnect the source zone. One way to check zone contiguity
is to count, starting from a randomly picked unit, the number
of connected units in the zone. If the count before the mutable
unit removal is not equal to one more than the count after the
removal, the zone is broken. This is an easy, though computation-
ally expensive check that requires O(d x % x 1) time for k zones,
where u is the average degree of unit connectivity. Although u
is not large on a planar graph, this function must be called for
each mutable unit. A more efficient way to ensure contiguity is
to check whether the boundary units (using queen neighborhood)
are connected only before and after unit removal. This check takes
0(d x ¢(n, k) x u'), where the function ¢(), which depends on
the shape of the zones, estimates the number of boundary units
in a zone and u’ is the average degree of connectivity among
boundary units, which is much smaller than u. Compact shapes
have small ¢() values.

PRCRX randomizes the order in which the T zones are visited
as well as the order for adding adjacent units in candidate sets.
This randomization diversifies the decision space search. The
resulting path, called path1, can be further optimized at little cost.
Algorithm 5 implements an optimization strategy by scanning
pathl in a greedy fashion. It begins with k seed groups, formed
at the beginning of the relinking process in PRCRX, and checks
the kG; groups to identify the best mutable unit to add to a
new path. This process requires O(path_length) time and creates
another path, called path2, along which another best solution is
found. This process allows us to identify the best choice from the
two paths as the output of the path relinking process.

4.2. Spatial mutation (ECMUT) algorithm
The ECMUT spatial mutation algorithm is designed within the

same path relinking framework. The chaining process is similar.
The primary difference is that, in the mutation operator, the

Y.Y. Liu and W.K.T. Cho / Applied Soft Computing Journal 90 (2020) 106129 9

Algorithm 2 The Spatial Overlap Operation.

1: function sPATIAL_OVERLAP(U, S, T)

2 X = [0]

3 i=1

4: Q=40

5: for u € U do

6: if u has been assigned a group then

7 continue

8 Xul=i

9: Q.enqueue(u)

10: while Q # ¢ do

11: u = Q.dequeue()

12: N, = {v | v is a neighbor of u on the adjacency graph}
13: for v € N, do

14: if v has been assigned a group then
15: continue

16: if S[u] = S[v] and T[u] = T[v] then
17: X[v] = X[u]

18: Q.enqueue(v)

19: i=i+1

20: =1

21: build G = {G[i],i=1,..., 1} from X
22: return X and G

> group index

> create a new group

> fetch a unit from Q

> same zone labels and contiguous

> same group
> recursive search to v’s neighbors

Algorithm 3 A General Path Relinking Crossover Algorithm.

1: function rLip(S’, G, C;)

2: randomly select a unit u € G,
3: G = G U {u}

4: S'[u] = the source zone of G,
5: C =C — {u}

6: return S’

7:
8:

function PRCRX0(S, T)
9: X = overlap(S, T)
10: {Gt}, {C} = seedKuniq(X, k)
11: d=n—-Y' (G
12: Shest =S’ =S
13: fori=1,...,d—1do

> build seed groups and candidate sets
> solution distance

14: randomly select a zone z in T
15: flip(S', G, C)

16: evaluate S’

17: if S’ is better than Spe; then
18: Spest =S’

19: return Spes

initial solution and the target solution are identical. That is, the
operator searches a neighborhood along a path that begins and
ends at the same solution. In ECMUT, we alternate the zones
to visit, and each visit identifies a number of mutable units, at
least one of which is on the zone boundary. These units are
then moved to a neighboring zone, which is identified from
the zone adjacency graph. Algorithm 6 shows how a general
ejection chain mutation algorithm can be adapted from a path
relinking framework. Algorithm 7 modifies this general algorithm
to incorporate spatial considerations. It extends a previous im-
plementation in Liu et al. [19] by allowing the chain length to be
flexible in the multi-mutation strategy. Possibly, ECMUT may not
be able to produce cyclic chains, but this is not required by the
optimization process.

5. Empirical evaluation

We evaluate our SEEC algorithm along with the performance
of the PRCRX and ECMUT operators with an application to a gen-
eral spatial zoning problem that has many applications, including,
for example, competitive analysis in economics [59], the drawing
of school district boundaries, and land use planning [60]. This
zoning problem follows the general definition of the spatial par-
titioning problem presented in Section 3. In this application, the
objective function has two components. The first minimizes the

difference in weights between the k zones. The second balances
the occupancy rate of two competing agents in a spatial region.
The occupancy rate, i.e. the proportional agent distribution in
each spatial unit, is modeled proportional to the weight distri-
bution between two agents. Incorporating multiple components
in the objective function makes the solution landscape more
complex and in turns allows a more nuanced test of algorithmic
performance. The fitness of each solution is a weighted measure
of the agent distribution and the weight balance of the zones.
The fitness improves as the weights are increasingly balanced
across the set of zones and the agent distribution is close to 50%
in each zone [61]. Both objectives are defined as minimization
functions, where 0 is the optimal value. Note that the fitness
function is a modular component and can be flexibly specified
as a weighted-sum of various components in a multi-objective
optimization for any application. Contiguity is the only spatial
constraint considered in our evaluation.

5.1. Implementation and case study

SEEC is implemented in C++ and parallelized using the Mes-
sage Passing Interface (MPI). Liu et al. [19] developed PEAR,
a high-performance computing tool for the spatial partitioning
of geographic units and demonstrated its utility in a specific
districting modeling application. PEAR implements a mutation
operator and a basic overlay+expansion crossover operator. They
found that the mutation operator was effective in searching the
decision space but that the performance of their particular cross-
over operator was limited. SEEC is developed as a general spatial
partitioning solver with both the ECMUT spatial mutation and the
PRCRX spatial crossover operators integrated. A random restart
feature is also implemented to handle early convergence issues.

Computational experiments were conducted on the Bridges
supercomputer at the Pittsburgh Supercomputing Center and
the ROGER supercomputer at the National Center for Super-
computing Applications (NCSA). Each Bridges node is config-
ured with 2 Intel Haswell (E5-2695 v3, 2.3 GHz) CPUs, 28 cores
in total, and 128 GB memory. The SEEC code was compiled
on Bridges using the Intel Compiler 19.3 and Intel MPI. Each
ROGER node is configured with the Intel Xeon E5-2660 pro-
cessor (2.6 GHz, 20cores/node) and 256 GB memory. SEEC was
compiled on ROGER using GCC 4.9.2 and MPICH 3.1.4. To en-
able asynchronous migration in the parallel version, we utilize
MPI non-blocking functions (i.e., MPI_Isend() and MPI_Iproble())

10 Y.Y. Liu and W.K.T. Cho / Applied Soft Computing Journal 90 (2020) 106129

Algorithm 4 PRCRX: A Spatial Crossover Algorithm Based on Path Relinking.

1: function PRCRX(S, T)
2 N

3 X = spatial_overlap(S, T)

4: {G:}, {C;} = seedKuniq(X, k)

50 d=n—Y"'_ (Gl

6: Speg =S5 =S

7 for zone z € S’ do

8: build adjacency graph BG, for boundary units in z
9: for zone z € T do

10: AC, =0

11: for u € G, do

12: AC, =AC,U{v|veNu)Arv e}

13: zsgt, = the zone of the initial G, in S

14: path = []

15: pathlen = 0

16: Do

17: zseq = a random sequence of size k to visit each zone in T
18: for z € zseq do

19: mu=20

20: Clpest = 0

21: for cu € AC, do

22: zs = S[cu]

23: if zs = zsgt, then

24: mu = cu

25: break

26: else

27: check BG for contiguity

28: if contiguity is maintained then

29: evaluate fitness of S’ if cu is moved
30: if the cu move leads to a better solution then
31: Clpest = CU

32: if mu = 0 then

33: if Clpesr > O then

34: Mu = Clpest

35: AC, = AC, — {mu}; expand AC, to include mu’s neighbors
36: G, = G, U {mu}

37: G =GC — {mu}

38: if mu is effective then

39: update BG

40: S'[mu] = zsgt,

41: path[pathlen++] = mu

42: if S’ is better than Sy, then

43: Spest = S’

44: while there was successful expansion on any G;

45: return path and Spes

> adjacency graph for all the n units. N(u) returns u’s neighbors
> build overlap

> build seed groups and candidate sets

> solution distance

> establish boundary unit adjacency graph for contiguity check
> build initial adjacent unit set to G, as candidate units

> a candidate unit neighbors G, but in C,

> the zone where mutable unit will move

> the mutable unit
> stores the best candidate unit in C,

> the zone of cu in S, not in S’
> same zone, no effect; but update G,, C;, AC,

> peek to see if it is mutable and with fitness improvement
> whether adding cu to zsgt, disconnects a zone in S’

> not ineffective move
> found an effective mutable unit

> update G,
> update C,

> update boundary unit adjacency graph of S’
> update the intermediate solution
> record the move on the path

to overlap computing and communication [62]. The algorith-
mic performance of SEEC, including the sequential performance
comparison with other heuristics and the parallel computing per-
formance, was conducted on Bridges. PRCRX and ECMUT operator
profiling was performed on ROGER.

We employed GIS data from the state of North Carolina for
our analysis.? The study area includes 2690 spatial units, shown
in Fig. 8. Spatial adjacency, i.e. the rook and queen neighborhood
matrices, is derived using open source GIS libraries, PySAL (http:
//pysal.org) and GDAL (http://gdal.org). The number of people
residing in each spatial unit is used as the weight in our objective
function. For each of the experiments reported, SEEC is configured
with the parameters specified in Table 1. The coefficients of the
fitness specification determine the solution landscape. The ini-
tial population is randomly generated and does not significantly
affect baseline solution quality. SEEC is designed to be agnostic
against specific solution landscapes and baseline solution qual-
ity. The setting of the EA population size is often a tradeoff.
Large EA population sizes tend to improve the effectiveness of
the crossover and mutation operators, but each iteration then

2 These data are publicly available from the U.S. Census Bureau
(https://www.census.gov/programs-surveys/geography/geographies/reference-
maps.2011.html) and the North Carolina General Assembly web site
(https://www.ncleg.gov).

requires more time. On fast machines or small problem sizes, a
large EA population is preferred. The PEA settings are tuned on
specific computing architecture to increase the computing and
communication overlapping in a parallel computing environment.

5.2. Comparison with other heuristics

We first compare the sequential SEEC EA (with the PRCRX
and ECMUT operators) with five alternative heuristics that have
been designed by others for the spatial partitioning problem [42].
These other heuristics include simulated annealing, greedy algo-
rithm, tabu search, GRASP, and GRASP (contiguous), which we
developed by enhancing the basic GRASP algorithm with conti-
guity support.3 Each experiment was repeated 20 times using 20
processor cores simultaneously on a single dedicated computing
node on the Bridges supercomputer.

All of the runs were allowed to continue until the algorithm
converged, which means that that algorithm was not able to

3 1t is worth noting that we also studied a conventional EA package based
on the rgenoud package in R. For this heuristic, during the 12-hour runtime,
none of the 20 runs generated any contiguous solution. Plainly, without spa-
tial adaptation, linear recombinations easily violate the contiguity’ constraint
on large problem instances. In general, this conclusion also applies to any
population-based heuristics that only employ linear methods to generate new
solutions.

http://pysal.org
http://pysal.org
http://pysal.org
http://gdal.org
https://www.census.gov/programs-surveys/geography/geographies/reference-maps.2011.html
https://www.census.gov/programs-surveys/geography/geographies/reference-maps.2011.html
https://www.ncleg.gov

Y.Y. Liu and W.K.T. Cho / Applied Soft Computing Journal 90 (2020) 106129 11

Algorithm 5 A Greedy Algorithm for Optimizing a Relinked Path.

function PATH_oPTIMIZE(S', T, G¢, path1, path1len)
Shest = §"=S
for zone z € S” do > establish boundary unit adjacency graph for contiguity check
build adjacency graph BG, for boundary units in z
for z €T do
muindex, = index of the first moved unit in G,
path2 = []
path2len = 0
while path2len < pathllen do
mu=20
zsmu=0
for zone z € T do
if muindex, = len(G,) then > group is exhausted
continue
cu = G,[muindex, | > get a moved unit and re-evaluate
zsgt = S"[cu]
check BG: whether adding cu to zsgt, disconnects a zone in S”
if contiguity is maintained then
evaluate fitness of S” if cu is moved
if the cu move leads to a better solution then

mu = cu
zsmu = zsgt
if mu = 0 then > no zones have feasible moves, end of the loop
break
update BG > update boundary unit adjacency graph of S”
S"[mu)] = zsmu > update the intermediate solution
path2[path2len] = mu > record the move on the path
if S” is better than Spes then
Sbest = s”
path2len++
muindex,++

return path2 and Spes

Fig. 8. Spatial units in North Carolina, colored by a weight attribute (population), overlaid with an example of a possible partition into 13 disjoint zones.

Table 1

SEEC parameter settings.
Fitness 0.2 x (weight balance) + 0.8 x (agent distribution)
PRCRX output the better solution from PRCRX() and PATH_OPTIMIZE()
Population size 200
Selection binary selection
Initial population 80% by region border; 20% by administration border
Elitism on
Homogeneity check interval 20,000 iterations
Homogeneity threshold 95% population’s solution distance < 10% x n
Export/import interval (PEA) 100/50
Migration rate (PEA) 2
Sending parallelism (PEA) 4

identify any further improved solutions. The best solutions iden- we can see, ECMUT handily outperformed these other algorithms,

tified by each algorithm are shown in Table 2. Among the five jdentifying a solution with a fitness value of 0.0479 in just 56.52 s.
other heuristics, the (;'RASP (contiguous) algorithm produced the Moreover, ECMUT continued to improve for the next 3 h, reaching
best result, reaching its best fitness, 0.0487, near the 9 h mark. . . .

Compare this performance when we utilized only the ECMUT its best fitness at 0.0313, as shown on the line labeled “EC-
operator. The “ECMUT snapshot” line shows when ECMUT out- ~ MUT best”. The performance of SEEC improved even more sig-
performed the best result from the GRASP (contiguous) run. As nificantly when the PRCRX operator was included along with

12 Y.Y. Liu and W.K.T. Cho / Applied Soft Computing Journal 90 (2020) 106129

Fitness

Eoda.

Time (in seconds)

50000 -
40000 -
30000~
20000 -

B - T B

0

SA Greedy Tabu GRASP GRASP (contig) ECMUT PRCRX+ECMUT

SA Greedy Tabu GRASP GRASP (contig) ECMUT PRCRX+ECMUT
Fig. 9. Performance summary statistics.
Table 2
Performance comparison with other heuristic algorithms.
Solution quality Cost
Best Agent Weight Time Iterations Iterations
fitness Distribution Balance (in s) per second
Simulated Annealing 0.0555 0.0614 0.0317 2,922.04 728 0.25
Greedy 0.0542 0.0642 0.0143 3,020.65 108,157 35.81
Tabu 0.0525 0.0634 0.0090 2,434.10 86,838 35.68
GRASP (default) 0.0578 0.0628 0.0376 2,345.38 86,518 36.89
GRASP (contiguous) 0.0487 0.0525 0.0335 32,206.56 97,389 3.02
ECMUT snapshot 0.0479 0.0423 0.0705 56.52 2,367 41.88
ECMUT best 0.0313 0.0320 0.0286 10,120.23 1,150,203 113.65
PRCRX+ECMUT snapshot 0.0484 0.0458 0.0590 204.48 1,285 6.28
PRCRX + ECMUT best 0.0121 0.0149 0.0005 6,249.35 463,311 74.14

ECMUT, shown on the lines labeled “PRCRX+ECMUT”. The snap-
shot line shows that PRCRX+ECMUT surpassed the best solution
identified by GRASP (contiguous) in 204.48 s (or 3.4 min). The
PRCRX+ECMUT run also continued to identify better solutions and
finished with the fitness value of 0.0121, with notably impressive
result on both agent distribution (1.49% from perfect distribution)
and weight balance (0.05% away from perfect balance).

Algorithm 6 A General Ejection Chain-Based Mutation Algorithm.

function EcMuTO(S, ecLength, cyclic)
seq = a random sequence of 1,...,n > n is the number of units
Zinjece = S[seq[1]] > zone assignment of the first ejecting unit
for i: 2 .. max(n, ecLength) do
Zeject = S[seqli]]
Slseqlil]l = zin
ejecting unit

> eject the current unit
> unit re-assigned to the zone from the previous
Zinject = Zeject > inject to next
if cyclic is True then

Slseq[11] = Zinject > cyclic ejection chain

To measure the robustness of the performance results, sum-
mary statistics for all of the runs are computed and presented as
box plots in Fig. 9. On the left, the box plots show the variation in
the best fitness achieved at the convergence point where no fur-
ther improvements were possible. Among the five other heuris-
tics, the tabu solver exhibited the highest variation across 20
runs. GRASP (contiguous) had the lowest variation and produced
the best median fitness among the other heuristics. However,
both the ECMUT and the PRCRX+ECMUT runs exhibited better
median and lower variations than GRASP (contiguous) across the
set of runs. The PRCRX+ECMUT runs consistently outperformed
runs with only ECMUT, though they were occasionally slower as
indicated by the identified outliers. Such outliers are indicators
of the difficulty and stochastic uncertainty encountered when
a solver attempts to find solutions with tighter fitness bounds.
Nonetheless, the SEEC algorithm consistently outperformed the
five other heuristics in producing more optimal solutions.

The box plots on the right in Fig. 9 show the time it takes
each heuristic to identify its best solution across multiple runs.

The simulated annealing, greedy algorithm, tabu, and GRASP suf-
fered from early convergence, which contributes to their poor
performance. GRASP (contiguous) was significantly slower, but
was more resilient to early convergence, and at least contin-
ued to improve, albeit slowly. In contrast, both ECMUT alone
and PRCRX+ECMUT continuously identified improvements more
quickly. The mean computing time for ECMUT was 8198 s, while
the mean for PRCRX+ECMUT was 6561 s.

Table 2 also shows the computational cost associated with
the best runs. Compared to ECMUT, the PRCRX operator is more
complex and should have much higher per-iteration cost, which
is not the case as reported in the last line of the table. PRCRX’s
rapid convergence affects the subsequent computations because
the distance between solutions becomes small. Also, since most of
the solutions in the population are feasible, there was no need to
perform feasibility improvement in ECMUT. As a result, iterations
accumulated without PRCRX and the feasibility improvement
from ECMUT. The iteration speed measured at the time of sur-
passing GRASP (contiguous) is a more accurate gauge at 6.28
iterations per second, indicating that PRCRX, although more effec-
tive, is almost 7 times slower than ECMUT, compared to ECMUT’s
41.88 iterations per second. This is not unusual since the length
of the path for a crossover operation is often much longer than
the length of an ejection chain for a mutation operation.

We now present results from the performance profiling of
SEEC operators on the ROGER supercomputer. Since most of
the plots are traces, data from a randomly chosen run for each
scenario is used. We inspected all of the runs, however, to ensure
that the presented results are consistent across all of the profiling
runs.

5.2.1. Performance enhancement by PRCRX

The impact of PRCRX on the evolutionary process was exam-
ined by sampling new solutions generated in both the ECMUT and
the PRCRX+ECMUT runs. The change in fitness for the feasible
elite solutions is illustrated in Fig. 10. At the start of the EA,
PRCRX was somewhat disruptive. PRCRX sufficiently diversified
the search so that the first feasible solution occurred later than

Y.Y. Liu and W.K.T. Cho / Applied Soft Computing Journal 90 (2020) 106129 13

Algorithm 7 ECMUT: A Spatial Mutation Algorithm Based on Ejection Chain.

1: function ecMUuT(U, S, ecLength, blocksize)
2: seq = a random sequence of 1, ..., ecLength
3: Solutions = ¢
4: fitnessO = fitness(S)
> iterative ejection chain building
5 for i: 1,..., eclength do
6: Zeject = (seqlil%k) + 1
7: Zejert = Z[zejec[]
8: Zinjec = Tandomly select a receiving zone for Zejecr
9 Zinject = Z[zinject]

> randomize the order of zone visit. ecLength: chain length
> solution set that holds improved solutions during the chaining

> initialize units in each zone
> zone index of the eject zone; k is the number of zones
> unit set of the eject zone

> unit set of the inject zone

> move these units to the inject zone

10: Ubipjecr = { u | u is a boundary unit of zone Ziyjecr }
> select set of contiguous units, A where A C Zye, | A|< blocksize and A is adjacent to Zijecr

11: A = select_mutable(Zeject, Ubinject, blocksize, Zeject)

12: if A = ¢ then

13: continue

14: for u € A do

15: S[u] = Zinject

16: if fitness(S) is better than fitnessO then

17: Solutions = Solutions U {S}

18: return Solutions

19:

20: function SELECT_MUTABLE(P, B, maxCount, C)
> P: a pool of contiguous units

> B: neighboring units to P, each sharing a common border to at least one unit in P
> maxCount: max number of movable units to select, as the stopping rule in the search
> C: an intermediate solution in which each zone’s contiguity holds after MU selection

21: Uy ={ u|ueP and u is adjacent to at least one unit in B}
22: Up = a unit randomly selected in Uy
23: M =up

> border units in P to B

> initial movable unit set

> randomized recursive traversal of the adjacency graph of P to select movable units

24: randUnitSearchRecur(P, M, maxCount, C)
25: return M

27: function RANDUNITSEARCHRECUR(P, M, maxCount, C)

> M: reference to the modifiable set of movable units
28: if maxCount = 0 then
29: return

> find neighboring units not yet included in the movable unit set

30: N = neighboring units of M in P
31: if N = ¢ then
32: return
33: m = a random number in [1..min(|N|, maxCount)]

34: M’ = up to m randomly selected units from N, that keep C contiguous

35: M=MUM
36: randUnitSearchRecur(P, M, maxCount — m)

> recursion exit

> recursion exit

PRCRX+ECMUT ——

800 1
700 * b
600
500

400

Fitness Value (x 10,000)

300

200 I L L I L I
0 200 400 600 800 1000 1200 1400 1600 1800

Time in Seconds

Fig. 10. Impact of PRCRX on fitness change. Lower fitness value indicates better
solution quality.

it did in the ECMUT run. Shortly thereafter, however, with more
feasible solutions in the population, the path relinking process
became highly effective. Several apparent fitness improvements
resulted from random restarts, which keep the top 10% solutions

in the current population and inject the other 90% with random
solutions.

5.2.2. PRCRX vs. ECMUT

To examine the difference in solution quality between PRCRX
and ECMUT, we reconfigured the EA so that PRCRX and ECMUT
take the same parent solutions from the population. Fig. 11 shows
the solution fitness (feasible and infeasible) from the first two
thousand iterations. Here, PRCRX outperformed ECMUT 91.65%
of the time. In a broader sampling of 20,000 iterations, PRCRX
produced a better solution quality 99.16% of the time. Two par-
ticular patterns are evident. First, fitness improved slowly with
ECMUT, which is to be expected given that it embodies only small
movements. Second, PRCRX produced rapid population conver-
gence (shown in the right part of the orange curve) and was
not able to progress much further until the first random restart.
Hence the performance of ECMUT is comparable with PRCRX at
the beginning of the search, but this pattern flips as the fitness
improves. Interestingly, around the 400th iteration, there was an
obvious and significant fitness improvement phase, which indi-
cates a pivot point that is often described as the phase transition
point in an optimization process. Such a transition was observed
consistently in every run of the experiment.

14 Y.Y. Liu and W.K.T. Cho / Applied Soft Computing Journal 90 (2020) 106129

3000

2000

1500

Fitness * 10000

1000

500

200 400 600 800

* ECMUT
* PRCRX

1000 1200 1400 1600 1800 2000

Iterations

Fig. 11. Performance comparison: PRCRX vs. ECMUT in the first 2000 iterations. For minimization problems, lower fitness values indicate better solution quality.

1600
+ PRCRX |
= overlay+expansion
_ 1400
8 a []]
S 1200 . -
w (]
z o : ..]'.I'- =e 8
c mE = ozl
S 1000 = .i =) T F
2 [] =] ." ! . - - -
8 800 = = 7= Al = —
) NEORE S el R ey g "
e 600 n "= =¥ " P aln o malay ,Jl. L _;\..L._‘ -I;r o A
[.'l. [] Il] L) T . I+ -ﬁ' .l.".rl| ‘l._', ‘1"-‘
8 n “r ‘r'..». o & i i s |"p.‘}..41_
= “'__ R e M Yy, ou LA J.._l"_.-,._

g 400 g .‘—..-,-—1-1 i . iy e = i [EE s
< [Y A (1] []
= []
‘s 200 - 1-‘1‘. ﬂhﬂfﬁ* ﬂ ":‘_'- L .o =
c N Su,| " n
e .t/ ¢ :“ i f Soolat * e Boae u
7} 0 s “ : ! q
£ s v ; ; N § s
3 0:00 4 : % o 00. to % 0‘ ‘." N $Te¢
9 200 ¢ . ‘ DA
g S .
= : S .
{ T *>

-400

=600 200 400 600 800 1000 1200 1400 1600 1800 2000

Iterations

Fig. 12. Performance comparison: PRCRX and the basic overlay+expansion. Both take the same input. Fitness difference between the input and output solution is

plotted. Negative difference values indicate fitness improvement.

5.2.3. PRCRX Vs. basic overlap-based recombination operators
Overlapping is a straightforward way to combine two spatial
solutions from which one generates a set of connected com-
ponents of finer granularity for recombination. Based on the
resulting overlap, different methods can be developed to generate
new solutions. In this experiment, the PRCRX spatial crossover
operator was compared with a simple overlap-based recombi-
nation method, which simply expands the k seed groups into
k zones. The results are shown in Fig. 12, where the fitness
change from the same parent solutions is plotted. We can see
from the figure that PRCRX was able to effectively improve the
fitness of the population, with the main source of fitness improve-
ment originating from the path relinking process, while the basic
overlay+expansion crossover procedure was not effective.

5.3. Path analysis

Fig. 13 plots the solution distance, path length, and the loca-
tion offset of the best solution found on the path for the first

2000 PRCRX calls. Path 1, from PRCRX(), and the optimized path
2, from PATH_oPTIMIZE(), display highly similar, but not identical,
patterns. First, notice the sudden drop of solution distance and
path length around iteration 1200. This may indicate a pivot
point at which the population became more homogeneous. It
may also be the turning point from a diversified search to an
intensified search. Second, the gap between solution distance and
path length existed throughout the test runs, which indicates
that spatial constraints may be inhibiting the transformation of
the source solution, S, to the target solution, T. Third, in PRCRX,
since the better of the two parent solutions is chosen as the
target solution, T, one might intuit that the best solution should
be found closer to T. However, the location of the best solution
(green points) along the path did not seem to follow a pat-
tern, suggesting that the distribution of better solutions is more
dispersed.

We also examined whether the best solution tends to emanate
from path 1 or 2 before the first random restart. On average,
68.83% of the best solutions originated from path 2, which seems

Y.Y. Liu and W.K.T. Cho / Applied Soft Computing Journal 90 (2020) 106129 15

Path1

2000
« solution distance

path 1
path 1 best location

1800
1600
1400
1200 ,

1000

Pathlength in units

200 v v y VL

200 400 600 800 1000 1200 1400 1600 1800 2000
Iterations

(a) Path 1

Path2
2000

+ solution distance.

path 2
path 2 bost location

1800

Path length in units

3

"~ 200 400 600 800 1000 1200 1400 1600 1800 2000
Iterations

(b) Path 2

Fig. 13. Path length analysis. Solution distance (blue), path 1 length (orange), and the location of the best solution on path 1 (green) are plotted for path 1 in

subfigure (a) and path 2 in subfigure (b).

Table 3

Weak scalability, which measures how long it takes (in seconds) to reach
multiple fitness thresholds using different number of processors in parallel runs.
A measure is left empty if a threshold was not reached within an hour.

np Fitness Thresholds
0.100 0.075 0.050 0.025 0.020
10 93.99 131.60 174.62 466.04 1116.78
20 80.51 117.78 168.39 336.03 1135.19
40 35.71 110.90 146.93 250.10 389.78

80 39.89 93.92 14348 22426 362.67
160 17.25 82.62 12956 22059 323.19

0.015

1785.87
1747.35
1175.69 2017.33
869.48 1507.02
721.92 1198.01

0.010 0.008

1446.12

np = number of processor cores.

intuitive because path 2 is built upon path 1. However, 31.17%
of the best solutions still arose from path 1, indicating that
the exploration starting from path 1 in PATH_OPTIMIZE() may be
affected by spatial constraints which inhibit further walk on path
1.

5.4. PRCRX in a parallel computing environment

This section examines the performance of our algorithm in the
parallel computing environment on the Bridges supercomputer
where each processor evolves an independent EA but solution
exchanges are introduced via asynchronous migration among EA
processes running in parallel [62]. Parallel computing enables an
enormous global EA population. The results from five different
experiments, using 10, 20, 40, 80, and 160 processor cores, are
shown in Table 3. Each computing node utilized 20 MPI processes
for a total of one hour. Each experiment was repeated 10 times,
and the average is reported. We conducted weak scaling tests to
measure the capability of our parallel implementation to perform
more effective numerical work when more computing power was
enlisted. As the number of processors increased, the size of the
global population increased as well. We measured the time taken
to reach multiple fitness thresholds by using different numbers
of processors. Overall, as more processors were employed, SEEC
was able to reach tighter fitness thresholds. Within the same
tight thresholds, utilizing additional processors was associated
with reduced computing time. Compared to the results from
the sequential runs in Section 5.2, the parallel runs using 160
processors found solutions beyond fitness threshold 0.010 much
faster. The best run achieved a fitness value of 0.0031 (with agent
distribution at 0.0037, and weight balance at 0.0007), a significant
improvement over the best sequential run.

6. Conclusion

An effective EA for spatial optimization must leverage informa-
tion from the underlying spatial configuration to guide the solu-
tion search while adhering to the fundamental principles underlying
crossover and mutation operators. Our approach preserves the
features of EA operators while extending their reach with a novel
spatially explicit evolutionary computation approach. The classic
crossover operator is replaced with PRCRX, a spatially cognizant
path relinking operator. The classic mutation operator is replaced
with ECMUT, an ejection chain heuristic operator, which embeds
guided spatial moves within the underlying non-linear decision
space. This novel EA approach preserves contiguity in the de-
cision space traversal and results in effective large-scale spatial
partitioning.

The performance gain of PRCRX and ECMUT over the basic
overlap+expansion technique is substantial. While overlapping
combines two solutions, it is unclear how the intersection of
the shapes at different locations preserves the desirable com-
ponents of the parent solutions. Path relinking, on the other
hand, leverages overlapping to obtain seeding groups, and bridges
parent solutions through incrementally constructed paths. The
recombination occurs along the path, allowing a controlled search
for new solutions. With PRCRX and ECMUT, SEEC provides a novel
EA approach with systematically designed and general spatial
operators that enable effective large-scale spatial partitioning.

An additional and attractive feature, especially for very large
optimization problems is that our framework seamlessly inte-
grates into a parallel evolutionary algorithm library, allowing
us to harness massive computing power that further extends
the reach of the algorithm. In a parallel environment, lack of
efficiency propagates and quickly degrades performance. Our spa-
tial path relinking operator precipitously increases efficiency and
provides a powerful means for the recombination of solutions
identified by different processors, creating a mechanism to lever-
age local populations for global evolutionary computation and
optimization.

SEEC provides a framework that incorporates a graph repre-
sentation of the PRCRX and ECMUT designs that is flexible in its
handling of other spatial elements such as adjacency, districts,
and network distance and pattern. The specific local moves in the
relinking paths and ejection chains can be customized for other
specific applications. The geometric information of spatial units is
able to incorporate both Euclidean distance as well as geometric
shapes. We will extend this framework to incorporate additional
spatial elements for more complex spatial configurations that
may require more intensive topological and geometric processing.

Certainly, problem instances can be sufficiently large to over-
whelm our innovations. There are several ways in which our work

16 Y.Y. Liu and W.K.T. Cho / Applied Soft Computing Journal 90 (2020) 106129

can be extended to enlarge its reach. Efficiency can be enhanced
whenever early convergence can be avoided. Here, however, one
must find a way to overcome the computational expense involved
with detecting population homogeneity. Even the simple binary
distance measure on p chromosomes requires the building of
a p x p matrix and takes O(p> x n) to compute, where n is
the number of variables. Since solution distance and path length
appear to be related to population homogeneity, one might ex-
plore the effect of separating the target solution set from the
population and explicitly controlling solution distance among the
target solutions. In the parallel EA implementation, a distributed
intensification and diversification protocol could be developed to
enhance search performance by improving coordination in the
evolution of the global population.

Our spatial recombination approach flexibly allows further
investigation and development of effective recombination strate-
gies for the spatial partitioning problem. The abstraction of spatial
neighborhood functions and the relinking and chaining mech-
anisms provide the basic building blocks for developing search
strategies based on the needs of specific applications. This heuris-
tic search framework can be used to solve real-world large scale
spatial optimization problems.

Declaration of competing interest

No author associated with this paper has disclosed any po-
tential or pertinent conflicts which may be perceived to have
impending conflict with this work. For full disclosure statements
refer to https://doi.org/10.1016/j.as0c.2020.106129.

Acknowledgments

This experiments conducted in this paper used the Extreme
Science and Engineering Discovery Environment (XSEDE) resour-
ces, which are supported by National Science Foundation (NSF)
grant number ACI-1548562. Specifically, it used the Bridges sys-
tem, which is supported by NSF award number ACI-1445606, at
the Pittsburgh Supercomputing Center (PSC). The performance
study also used the ROGER supercomputer at the University of
[llinois, which was supported by NSF Grant 1429699.

References

[1] Ningchuan Xiao, A unified conceptual framework for geographical opti-
mization using evolutionary algorithms, Ann. Assoc. Amer. Geographers
98 (4) (2008) 795-817.

[2] Daoqin Tong, Alan T. Murray, Spatial optimization in geography, Ann.

Assoc. Amer. Geographers 102 (6) (2012) 1290-1309.

[3] Johann Heinrich Von Thunen, Der isolierte staat, in: Von Thiinens Isolated
State, Pergamon, London, 1842.

[4] Andries M. Heyns, Jan H. van Vuuren, Multi-type, multi-zone facility

location, Geogr. Anal. 50 (1) (2018) 3-31.

M.E. OKelly, Locational modeling in spatial analysis: Development and

maturity of concepts, in: Spatial Analysis and Location Modeling in Urban

and Regional Systems, Springer, 2018, pp. 265-281.

[6] Mingjie Song, DongMei Chen, A comparison of three heuristic optimization
algorithms for solving the multi-objective land allocation (MOLA) problem,
Ann. GIS 24 (1) (2018) 19-31.

[7] Jing Yao, Xiaoxiang Zhang, Alan T. Murray, Spatial optimization for land-
use allocation: Accounting for sustainability concerns, Int. Reg. Sci. Rev. 41
(6) (2018) 579-600.

[8] Reza Zanjirani Farahani, Nasrin Asgari, Nooshin Heidari, Mahtab Hos-
seininia, Mark Goh, Covering problems in facility location: A review,
Comput. Ind. Eng. 62 (1) (2012) 368-407.

[9] Alan T. Murray, Maximal coverage location problem impacts, significance,
and evolution, Int. Reg. Sci. Rev. 39 (1) (2016) 5-27.

[10] Alan T. Murray, Morton E. O’Kelly, Richard L. Church, Regional service
coverage modeling, Comput. Oper. Res. 35 (2) (2008) 339-355.

[11] Ningchuan Xiao, Peixuan Jiang, Myung Jin Kim, Anuj Gadhave, A multi-
start heuristic approach to spatial aggregation problems, in: International
Conference on GIScience Short Paper Proceedings, Vol. 1, No. 1, 2016.

[5

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
[21]
[22]

(23]

(24]

(25]

(26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

[39]

Fahui Wang, Diansheng Guo, Sara McLafferty, Constructing geographic
areas for cancer data analysis: A case study on late-stage breast cancer
risk in illinois, Appl. Geogr. 35 (1) (2012) 1-11.

Hongying Liu, Shuyuan Yang, Shuiping Gou, Shuai Liu, Licheng Jiao, Terrain
classification based on spatial multi-attribute graph using Polarimetric SAR
data, Appl. Soft Comput. 68 (2018) 24-38.

Jan Faigl, Data collection path planning with spatially correlated measure-
ments using growing self-organizing array, Appl. Soft Comput. 75 (2019)
130-147.

Lavika Goel, Daya Gupta, V.K. Panchal, Hybrid bio-inspired techniques for
land cover feature extraction: A remote sensing perspective, Appl. Soft
Comput. 12 (2) (2012) 832-849.

M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H. Freeman and Co., New York, 1979.
Wenwen Li, Kai Cao, Richard L. Church, Cyberinfrastructure, GIS, and
spatial optimization: opportunities and challenges, Int. J. Geogr. Inf. Sci.
30 (3) (2016) 427-431.

Juan C. Duque, Richard L. Church, Richard S. Middleton, The p-regions
problem, Geogr. Anal. 43 (1) (2011) 104-126.

Yan Y. Liu, Wendy K. Tam Cho, Shaowen Wang, PEAR: A massively parallel
evolutionary computation approach for political redistricting optimization
and analysis, Swarm Evol. Comput. 30 (2016) 78-92.

John G. Hof, Michael Bevers, Spatial Optimization for Managed Ecosystems,
Columbia University Press, New York, 1998.

Morton E. O’Kelly, Harvey]. Miller, The hub network design problem: A
review and synthesis,]. Transp. Geography 2 (1) (1994) 31-40.

John H. Holland, Adaptation in Natural and Artificial Systems, MIT Press,
Cambridge, MA, USA, 1992.

Sewall Wright, The roles of mutation, inbreeding, crossbreeding and
selection in evolution, in: Proc. 6th Int. Cong. Genet., Vol. 1, 1932, pp.
356-366.

David Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley Professional, Reading, MA, 1989.

C.M. Hosage, M.F. Goodchild, Discrete space location-allocation solutions
from genetic algorithms, Ann. Oper. Res. 6 (2) (1986) 35-46.

Yan Y. Liu, Wendy K. Tam Cho, Shaowen Wang, A scalable computational
approach to political redistricting optimization, in: Proceedings of the
2015 XSEDE Conference: Scientific Advancements Enabled By Enhanced
Cyberinfrastructure, XSEDE '15, ACM, New York, NY, USA, 2015, pp. 1-2.
Pablo Moscato, On Evolution, Search, Optimization, Genetic Algorithms
and Martial Arts: Towards Memetic Algorithms, Caltech Concurrent
Computation Program, C3P Report 826, 1989.

Christian Blum, Jakob Puchinger, Giinther R Raidl, Andrea Roli, Hybrid
metaheuristics in combinatorial optimization: A survey, Appl. Soft Comput.
11 (6) (2011) 4135-4151.

Devendra K. Chaturvedi, Soft Computing: Techniques and its Applications
in Electrical Engineering, Springer-Verlag, Berlin, Germany, 2008.

Khin Lwin, Rong Qu, Graham Kendall, A learning-guided multi-objective
evolutionary algorithm for constrained portfolio optimization, Appl. Soft
Comput. 24 (2014) 757-772.

Omer Berat Sezer, Ahmet Murat Ozbayoglu, Algorithmic financial trading
with deep convolutional neural networks: time series to image conversion
approach, Appl. Soft Comput. 70 (2018) 525-538.

Tomoaki Kashiwao, Koichi Nakayama, Shin Ando, Kenji Ikeda, Moonyong
Lee, Alireza Bahadori, A neural network-based local rainfall prediction
system using meteorological data on the internet: A case study using
data from the Japan meterological agency, Appl. Soft Comput. 56 (2017)
317-330.

Yu-Feng Chen, Zhan Gao, Hong Zhou, Yan Wang, Tao Zhang, Kai Che,
Zheng-Tao Xiang, Traffice flow guidance algorithm in intelligent trans-
portation systems considering the effect of non-floating vehicle, Soft
Comput. 23 (19) (2019) 9097-9110.

Irina Perfilieva, Javier Montero, Salvatore Sessa, Editorial to image pro-
cessing with soft computing techniques, Soft Comput. 23 (6) (2019)
1777-1778.

Elon Santos Correa, Maria Teresinha A Steiner, Alex A Freitas, Celso
Carnieri, A genetic algorithm for solving a capacitated p-median problem,
Numer. Algorithms 35 (2-4) (2004) 373-388.

Jonas Schwaab, Kalyanmoy Deb, Erik Goodman, Sven Lautenbach,
Maarten J. van Strien, Adrienne Grét-Regamey, Improving the performance
of genetic algorithms for land-use allocation problems, Int.]J. Geogr. Inf.
Sci. 32 (5) (2018) 907-930.

Nozomi Hitomi, Daniel Selva, Incorporating expert knowledge into evo-
lutionary algorithms with operators and constraints to design satellite
systems, Appl. Soft Comput. 66 (2018) 330-345.

S. Openshaw, A geographical solution to scale and aggregation problems
in region-building, partitioning and spatial modelling, Trans. Inst. Br.
Geographers (1977) 459-472.

S. Openshaw, L. Rao, Algorithms for reengineering 1991 census geography,
Environ. Plan. A 27 (3) (1995) 425-446.

https://doi.org/10.1016/j.asoc.2020.106129
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb1
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb1
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb1
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb1
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb1
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb2
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb2
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb2
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb3
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb3
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb3
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb4
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb4
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb4
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb5
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb5
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb5
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb5
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb5
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb6
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb6
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb6
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb6
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb6
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb7
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb7
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb7
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb7
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb7
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb8
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb8
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb8
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb8
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb8
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb9
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb9
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb9
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb10
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb10
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb10
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb12
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb12
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb12
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb12
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb12
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb13
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb13
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb13
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb13
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb13
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb14
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb14
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb14
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb14
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb14
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb15
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb15
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb15
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb15
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb15
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb16
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb16
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb16
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb17
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb17
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb17
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb17
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb17
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb18
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb18
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb18
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb19
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb19
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb19
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb19
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb19
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb20
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb20
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb20
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb21
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb21
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb21
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb22
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb22
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb22
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb24
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb24
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb24
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb25
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb25
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb25
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb26
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb26
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb26
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb26
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb26
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb26
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb26
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb27
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb27
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb27
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb27
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb27
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb28
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb28
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb28
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb28
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb28
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb29
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb29
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb29
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb30
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb30
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb30
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb30
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb30
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb31
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb31
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb31
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb31
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb31
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb32
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb32
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb32
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb32
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb32
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb32
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb32
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb32
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb32
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb33
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb33
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb33
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb33
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb33
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb33
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb33
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb34
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb34
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb34
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb34
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb34
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb35
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb35
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb35
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb35
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb35
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb36
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb36
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb36
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb36
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb36
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb36
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb36
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb37
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb37
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb37
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb37
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb37
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb38
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb38
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb38
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb38
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb38
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb39
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb39
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb39

[40]

[41]

[42]
[43]
[44]
[45]
[46]
[47]
(48]
[49]
[50]

[51]

Y.Y. Liu and W.K.T. Cho / Applied Soft Computing Journal 90 (2020) 106129 17

Daogin Tong, Alan Murray, Ningchuan Xiao, Heuristics in spatial anal-
ysis: a genetic algorithm for coverage maximization, Ann. Assoc. Amer.
Geographers 99 (4) (2009) 698-711.

Ningchuan Xiao, David A. Bennett, Marc P. Armstrong, Using evolutionary
algorithms to generate alternatives for multiobjective site-search problems,
Environ. Plan. A 34 (4) (2002) 639-656.

Roger Bivand, Geocomputation and open source software: components and
software stacks, NHH Dept. of Economics Discussion Paper (23), 2011.
S.D. Minor, T.L. Jacobs, Optimal land allocation for solid and hazadous
waste landfill siting, J. Environ. Eng. 120 (1994) 1095-1108.

CJ. Brookes, A parameterized region-growing programme for site allocation
on raster suitability maps, Int. J. Geogr. Inf. Sci. 11 (1997) 375-396.
Thomas J. Cova, Richard L. Church, Contiguity constraints for single-region
site search problems, Geogr. Anal. 32 (4) (2000) 306-329.

Justin C. Williams, A zero-one programming model for contiguous land
acquisition, Geogr. Anal. 34 (4) (2002) 330-349.

Takeshi Shirabe, A model of contiguity for spatial unit allocation, Geogr.
Anal. 37 (1) (2005) 2-16.

Takeshi Shirabe, Districting modeling with exact contiguity constraints,
Environ. Plan. B: Plann. Des. 36 (6) (2009) 1053-1066.

Alan T. Murray, Tony H. Grubesic, Ran Wei, Spatially significant cluster
detection, Spat. Stat. 10 (Suppl. C) (2014) 103-116.

Thomas P. Runarsson, Xin Yao, Stochastic ranking for constrained
evolutionary optimization, IEEE Trans. Evol. Comput. 4 (3) (2000) 284-294.
Hesam Izakian, Witold Pedrycz, A new PSO-optimized geometry of spatial
and spatio-temporal scan statistics for disease outbreak detection, Swarm
Evol. Comput. 4 (2012) 1-11.

[52]

(53]

(54]
[55]

(561

(571

(58]
[59]
(60]
(61]

(62]

Douglas M. King, Sheldon H. Jacobson, Edward C. Sewell, Wendy K. Tam
Cho, Geo-graphs: An efficient model for enforcing contiguity and hole
constraints in planar graph partitioning, Oper. Res. 60 (5) (2012)
1213-1228.

James MacQueen, Some methods for classification and analysis of multi-
variate observations, in: Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1 Statistics, University of
California Press, Berkeley, California, 1967, pp. 281-297.

Fred Glover, Genetic algorithms and scatter search: Unsuspected potentials,
Stat. Comput. 4 (2) (1994) 131-140.

Fred Glover, Manuel Laguna, Rafael Marti, Fundamentals of scatter search
and path relinking, Control Cybernet. 29 (3) (2000) 653-684.

Mutsunori Yagiura, Toshihide Ibaraki, Fred Glover, An ejection chain
approach for the generalized assignment problem, INFORMS]. Comput.
16 (2) (2004) 133-151.

Mutsunori Yagiura, Toshihide Ibaraki, Fred Glover, A path relinking ap-
proach with ejection chains for the generalized assignment problem,
European J. Oper. Res. 127 (2) (2006) 548-569.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein,
Introduction to Algorithms, third ed., The MIT Press, 2009.

Gaia Nicosia, Andrea Pacifici, Ulrich Pferschy, Competitive subset selection
with two agents, Discrete Appl. Math. 159 (16) (2011) 1865-1877.

Paul N. Courant, On the effect of fiscal zoning on land and housing values,
J. Urban Econom. 3 (1) (1976) 88-94.

Hamid Hamoudi, Marta Risueno, The effects of zoning in spatial
competition, J. Reg. Sci. 52 (2) (2012) 361-374.

Yan Y. Liu, Shaowen Wang, A scalable parallel genetic algorithm for the
generalized assignment problem, Parallel Comput. 46 (2015) 98-119.

http://refhub.elsevier.com/S1568-4946(20)30069-7/sb40
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb40
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb40
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb40
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb40
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb41
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb41
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb41
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb41
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb41
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb43
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb43
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb43
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb44
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb44
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb44
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb45
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb45
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb45
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb46
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb46
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb46
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb47
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb47
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb47
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb48
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb48
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb48
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb49
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb49
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb49
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb50
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb50
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb50
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb51
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb51
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb51
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb51
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb51
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb52
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb52
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb52
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb52
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb52
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb52
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb52
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb53
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb53
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb53
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb53
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb53
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb53
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb53
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb54
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb54
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb54
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb55
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb55
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb55
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb56
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb56
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb56
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb56
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb56
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb57
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb57
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb57
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb57
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb57
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb58
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb58
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb58
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb59
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb59
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb59
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb60
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb60
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb60
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb61
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb61
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb61
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb62
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb62
http://refhub.elsevier.com/S1568-4946(20)30069-7/sb62

	A spatially explicit evolutionary algorithm for the spatial partitioning problem
	Introduction
	Literature review
	Methodology
	Satisfying spatial constraints
	Limitations of EA crossover operators
	Spatial recombination approach
	Adapting path relinking and ejection chain
	Spatial crossover through path relinking
	Spatial mutation through ejection chain

	The PRCRX and ECMUT algorithms
	Spatial crossover (PRCRX) algorithm
	Spatial mutation (ECMUT) algorithm

	Empirical evaluation
	Implementation and case study
	Comparison with other heuristics
	Performance enhancement by PRCRX
	PRCRX vs. ECMUT
	PRCRX Vs. basic overlap-based recombination operators

	Path analysis
	PRCRX in a parallel computing environment

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

