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Abstract

I examine a recently proposed solution to the ecological inference prob-
lem (King 1997). It is asserted that the proposed model is able to recon-
struct individual-level behavior from aggregate data. I discuss in detail
both the bene�ts and limitations of this model. The assumptions of
the basic model are often inappropriate for instances of aggregate data.
The extended version of the model is able to correct for some of these
limitations. However, it is di�cult in most cases to apply the extended
model properly.

Introduction

For a wide variety of questions, especially those which involve histori-
cal research or volatile issues such as race, aggregate data supply one
of the only sources of reliable data. However, making inferences about
micro-level units when the only available data are aggregated above the
micro-level unit in question is extremely di�cult. Consider the example
of aggregate data analysis in investigating the gender gap by estimat-
ing presidential voting behavior among women. For each precinct, the
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number of votes received by each presidential candidate is known. In
addition, the number of registered female voters and the number of reg-
istered male voters is known. However, because of the secret ballot, the
manner in which the votes were cast is unknown. In the absence of re-
liable survey data, one can determine the number of men and women
who voted for each candidate only by modeling the situation. There are
a variety of assumptions and many statistical methods upon which such
a model can be formed.

Whenever a statistical model is employed, one should consider the
implications of the model's assumptions. All aggregate data models in-
corporate assumptions which must be taken under careful consideration.
The merits of applying a statistical model to a problem necessarily de-
pend on the consistency of the assumptions with the problem at hand.
The King (1997) model (hereafter referred to as \EI") for reconstructing
individual behavior from aggregate data is no exception. In this paper,
I examine the bene�ts and limitations of applying EI to instances of
aggregate data.

The Basic EI Model

There are basically two \
avors" of EI. For ease, one will be called
\basic EI" and the other will be referred to as \extended EI." Basic EI
merits its own discussion because it is claimed to be adequate in many
situations (King 1997, 284). For this reason, I discuss basic EI �rst,
and then examine the extended model, with particular attention to its
ability to compensate for the shortcomings of the basic model.

The Basic Model. EI is a notable advancement to ecological in-
ference in that it incorporates two ideas which are ideally suited for ag-
gregate data, but which have never previously been utilized in tandem.
Together, these elements bring a new degree of e�ciency to aggregate
data analysis. The �rst of these two ideas is the deterministic method of
bounds, �rst introduced by Duncan and Davis (1953). The method of
bounds narrows the range of possible parameter estimates. Since we are
normally interested in estimating probabilities or proportions, the range
of possible parameter values is immediately restricted to the closed in-
terval [0; 1]. Through the method of bounds, we can usually restrict this
range even further. However, while the method of bounds can, in theory,
provide extremely narrow bounds, it rarely does so in practice. The EI
bounds are an obvious extension of the Duncan and Davis bounds and
have been known and used previously (Shively 1974; Ansolabehere and
Rivers 1997). The additional information incorported in these bounds
is still not generally su�cient to make interesting substantive claims.

Since the method of bounds is generally not su�cient in and of
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itself, EI incorporates a second probabilistic component, the random
coe�cient model, largely popularized by Swamy (1971). In particular,
EI assumes that the parameters are not constant and that the parameter
variation can be described by a truncated bivariate normal distribution.
In other words, the assumption is that the parameters \have something
in common|that they vary but are at least partly dependent upon one
another" (King 1997, 93). The suggestion that a random coe�cient
model may be better suited than OLS for aggregate data was originally
made by Goodman (1959). King's contribution, then, is just the choice
of distribution.

The basic EI model incorporates three assumptions (King 1997,
158). First, the parameters are assumed to be distributed according
to a truncated bivariate normal distribution. Second, the parameters
are assumed to be uncorrelated with the regressors. In other words,
\aggregation bias" is not present (King 1997, 55). Lastly, it is assumed
that the data do not exhibit any spatial autocorrelation. Since the ba-
sic model is not appropriate for every instance of aggregate data (King
1997, 24), it is useful to determine how robust the basic model is to
deviations from its assumptions and thus to determine when the basic
model is appropriate.

Monte Carlo Simulations. The assumptions of the model can
be examined through Monte Carlo simulations. King (1997) performed
some of these tests for basic EI. In particular, one Monte Carlo experi-
ment with data inconsistent with the spatial autocorrelation assumption
but consistent with the distributional assumption and the assumption of
uncorrelated parameters and regressors was performed (King 1997, 168,
Table 9.1). Another Monte Carlo simulation included data which were
inconsistent with the distributional assumption but consistent with the
spatial autocorrelation assumption and the assumption of uncorrelated
parameters and regressors (King 1997, 189, Table 9.2). A �nal Monte
Carlo simulation generated data inconsistent with the no aggregation
bias assumption but consistent with both the distributional and spatial
autocorrelation assumptions (King 1997, 179{182, � = 0 case). Follow-
ing are three Monte Carlo simulations which exactly replicate King's
setup. In addition, to gain a benchmark for comparison, the results are
compared to those obtained using OLS as the aggregate data model.

Consider �rst the consequences of spatial autocorrelation in aggre-
gate data. The results of a Monte Carlo simulation are reported in Table
1. Each row of the table summarizes 250 simulations drawn from the
model with the degree of spatial autocorrelation � and number of ob-
servations p.1 The data were generated in exactly the same manner as

1Due to computational problems resulting from a lack of RAM, the simulations
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TABLE 1. Consequences of Spatial Autocorrelation

OLS Basic EI

� p Error (S.D.) p Error (S.D.)

0 100 .0224 (.0167) 100 .001 (.020)
0 750 .0085 (.0065) 1,000 .000 (.007)
.3 100 .0227 (.0165) 100 .001 (.020)
.3 750 .0082 (.0063) 1,000 .000 (.006)
.7 100 .0221 (.0161) 100 .001 (.022)
.7 750 .0079 (.0060) 1,000 .001 (.006)

described in King (1997, 166). The reported results for basic EI are
taken directly from Table 9.1 in King (1997, 168).

While one might expect spatial autocorrelation to be problematic in
aggregate analysis, this is clearly not the case if the data are consistent
with the other two assumptions. The Monte Carlo evidence implies that
spatial autocorrelation, on its own, does not induce bias into either the
OLS or EI model. While the error for EI is smaller and approaches zero
faster, the OLS results are similarly favorable. Certainly, one would
be thrilled with an aggregate data model that performs as well as the
OLS model does on these data. Indeed, both of these models are robust
against deviations from the spatial autocorrelation assumption when it
is the only inconsistent assumption.

A second Monte Carlo experiment examines the consequences of
data that are inconsistent with the distributional assumption but exhibit
neither aggregation bias nor spatial autocorrelation. These data were
generated according to the exact data generating process described in
King (1997, 188) for the truncated normal distribution. In order to
maintain consistency with the other two assumptions, the parameters
were chosen so that truncation is symmetric. Each distribution has two
modes which di�er but have the same variance/covariance structure.

The results are displayed in Table 2. The numbers reported for
basic EI are taken directly from King, Table 9.2, p. 189. The point
estimates from the basic EI model seem to be better than the point
estimates from the OLS model. However, once we take the standard
deviation into account, the estimates are indistinguishable. Both models
perform quite admirably when faced with distributional misspeci�cation
if the spatial autocorrelation and aggregation bias assumptions hold.
Again, robustness to the distributional assumption is clear if all other

with 1,000 observations that were performed for EI could not be replicated. How-
ever, simulations with 750 observations were performed and are equally su�cient in
establishing the same pattern as n increases.
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TABLE 2. Consequences of Distributional

Misspeci�cation

OLS Basic EI

Truncation p Error (S.D.) Error (S.D.)

Low 100 .0157 (.0150) .001 (.020)
High 100 .0168 (.0142) .001 (.011)
Low 25 .0289 (.0254) .001 (.038)
High 25 .0289 (.0250) .001 (.024)

assumptions are consistent.

Lastly, data that exhibit aggregation bias but are consistent with the
distributional and spatial autocorrelation assumptions were generated.
In this simulation, 250 data sets were generated exactly according to the
description in King (1997, 161). King describes these data as a \worst
case scenario" because, he says, the data have bounds that are minimally
informative (1997, 161, 182). I generated the data randomly from the
model with parameters �b = �w = 0:5, �b = 0:4, �w = 0:1, and � = 0:2.
The results are displayed in Figures 1 and 2. The true parameter values,
�b = �w = 0:5, are marked in the plots by a vertical line.

Indisputably, these results are orders of magnitude worse than the
results of the �rst two simulations. The density plots in Figure 1 clearly
show that the point estimates are far from the true values. Figure 2
plots the error bars. For each simulation, a bar is drawn where the
center of the bar is the point estimate. The bar extends one standard
error to the left and one standard error to the right. As we can see,
the error bars in Figure 2 clearly indicate that, even accounting for the
standard errors, the estimates are inaccurate.2 Moreover, the sense of
precision is overstated more by EI than OLS. On average, the EI esti-
mates for �b are 25 S.E.s from the true value. For �w, the EI estimates
are, on average, �14:7 S.E.s from the true value. Compare these results
with the OLS results. On average, in the OLS model, �b is 18.8 S.E.s
from the true value while �w is �11:4 S.E.s from the true value. Obvi-
ously, the standard errors are erroneously estimated and suggest more
precision than actually exists. Although inconsistencies with the dis-
tributional assumption and the spatial autocorrelation assumption are
not consequential if aggregation bias does not simultaneously exist, this
auspicious condition does not hold for the aggregation bias assumption.
Even if the data are consistent with the other two assumptions, if the

2There are two instances out of 250 simulations where the error bars touch the
true parameter values. However, these two instances clearly seem to be anomalies
and the result of erroneous calculations by the EzI estimation program.
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Fig. 1. Density plots from a Monte Carlo simulation with data which are

consistent with the distributional and spatial autocorrelation assumptions but

inconsistent with the aggregation bias assumption. The true value of the parameter

is marked by a small vertical line.

parameters are correlated with the regressors, neither OLS nor EI will
yield accurate results. Neither model displays any noticeable robustness
to this assumption.

Despite the obvious lack of robustness here, King states that the
use of the bounds can make basic EI \robust," \even in the face of mas-
sive aggregation bias," because if the bounds are informative, they will
\provide a deterministic guarantee on the maximum risk a researcher
will have to endure, no matter how massive aggregation bias is" (King
1997, 177, 182). He writes, \Under the model introduced here, `aggre-
gation bias' in the data does not necessarily generate biased estimates of
the quantities of interest" (King 1997, 218). He also provides empirical
examples that show that when the bounds are informative, EI can be
\robust" in King's sense of the word even though there is aggregation
bias. In Chapter 11, the posterior distribution of the state-wide frac-
tions covers the true values very well (King 1997, 222). In Chapters 12
and 13, the posterior distribution covers the true values well for one of
the fractions but not the other (King 1997, 231, 240). In King's view,
informative bounds are necessary for EI to be \robust," again in his
special sense of \robust," when there is aggregation bias.

Despite the reference to \risk," King's conception of robustness has
no connection to formal treatments of robustness to assumptions (ro-
bust priors) such as have been developed in Bayesian statistical theory
(Berger 1985). King's notion of robustness is also unrelated to formu-
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Fig. 2. Error bar plots from a Monte Carlo simulation with data which are

consistent with the distributional and spatial autocorrelation assumptions but

inconsistent with the aggregation bias assumption. The true parameter values are

marked by the long vertical lines. The error bars to the left of the vertical line are for

�w. The error bars to the right of the vertical line are for �b. Both �b and �w

have a true parameter value of 0.5.

lations such as those of Box (1953) and Sche��e (1959) which de�ne a
robust method as one in which the inferences are not seriously invali-
dated by the violation of assumptions. Nor is King's de�nition consistent
with the work of Huber (1981), which de�nes an estimator as robust if
it is consistent even when part of the data is contaminated. King does
not assert that the use of bounds in basic EI means that basic EI is
an unbiased or consistent estimator if there is aggregation bias. Indeed,
it is not. If there is aggregation bias, the basic EI estimator is biased,
and the discrepancy between the estimates and the true values does not
converge in probability to zero as the sample of data points becomes
large.

One should note that the data for these experiments are rather ar-
ti�cial. One would not expect to see such patterns in real instances of
aggregate data. The three assumptions of the basic EI model are logi-
cally distinct, but data will not often be consistent with one assumption
while inconsistent with the other two assumptions (King 1997, 159).
More likely, the data will be inconsistent with more than one assump-
tion. The Monte Carlo experiments have demonstrated that the crucial
assumption concerns aggregation bias. In other words, if the parame-
ters are not correlated with the regressors, aggregate data analysis is not
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TABLE 3. Hypothetical Aggregate Data Set for Presidential Vote

Vote for Clinton Total Number of

Precinct From From Minority Majority
Leaning Total Minorities Majority Voters Voters

1 Democrat 128 56 72 80 120
2 Republican 72 30 42 60 140
3 Democrat 130 70 60 100 100
4 Republican 74 35 39 70 130
5 Democrat 134 98 36 140 60
6 Republican 80 50 30 100 100

Ecological Regression Minority Vote: 90% Majority Vote: 20%
Basic EI Minority Vote: 77% Majority Vote: 30%
Truth Minority Vote: 62% Majority Vote: 43%

problematic.
Hypothetical Example. A �nal example of arti�cial data illus-

trates in a particularly simple way how correlation between regressors
and parameters causes di�culty for ecological inference. Consider the
hypothetical data in Table 3. The goal is to determine rates of voting
for Clinton among minority voters and majority voters. The true major-
ity support for Clinton is 43 percent while the true minority support is
62 percent. In a contrived example, this information is easily retrieved.
Minority support for Clinton in precinct 1 is 56=80 = 70 percent, and
so on. In general, however, even though we can obtain the number of
minority voters in each precinct, the number of minorities who voted for
Clinton is unknown. Instead, Clinton's support among di�erent groups
must be modeled.

The OLS model (also referred to as \Goodman's regression") is

(% CLINTON VOTE)

= (1�% MINORITY)�M + (% MINORITY)�m + e

where e � N(0; �2). OLS assumes that the parameters are constant re-
gardless of precinct of residence; i.e., in precinct 1, minority support for
Clinton is m percent, and minority support in precincts 2{6 is the same
m percent. Since minority support in precinct 1 is 70 percent while mi-
nority support in precinct 2 is 50 percent, the assumption of constancy
is plainly wrong. Hence, it is not surprising that the OLS model mistak-
enly reports that 90 percent of the minorities voted for Clinton while 20
percent of the majority voted for Clinton. The problem is that minorities
who live in precincts which lean Democratic support Clinton at higher
rates than those who reside in more Republican precincts. In other
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words, the parameters are correlated with the regressors. As a result of
this correlation, the parameter estimates are biased (Ansolabehere and
Rivers 1997).

EI accounts for the parameter variation by assuming that while the
parameters are not constant, they retain a single common mode that is
described by a truncated bivariate normal distribution. In this example,
it is clear that this distributional assumption is inappropriate. The dis-
tribution is unimodal but the data it purports to describe are bimodal,
one mode for the Republican districts and one mode for the Demo-
cratic districts. The incorrect distributional assumption simultaneously
exists with the correlation between the parameters and the regressors.
Hence, also not surprisingly, basic EI produces poor estimates of the
true parameters.3 Basic EI, like OLS, will produce poor results when
its assumptions do not �t the data.

Some of the stringent assumptions of basic EI can be modi�ed in
extended EI. In the extended EI model, the components of basic EI,
bounds and varying parameters, remain the same. However, extended EI
allows a user to modify the distributional assumption for the parameter
variation by including covariates to describe separate modes.4 After
conditioning on covariates, if the parameters are mean independent of
the regressors, aggregate data analysis is straightforward. In this case,
the precinct's partisan leaning is the crucial missing covariate. Adding
this covariate to the model allows the Democratic precincts to have one
mean while the Republican precincts would have a separate mean. This
setup de�nes two subsets of the data where the parameters are constant
and therefore clearly not correlated with the regressors. Obviously, if one
can identify subsets of the data where the parameters do not vary, the
correlation between parameters and regressors is no longer a problem.
In addition, the distributional and spatial autocorrelation assumptions
are also now consistent.

The Speci�cation Problem. The hypothetical example violates

3Basic EI is the model that was described earlier and is run when the data are
inserted into the EI program and no model options are changed. Some options are
available to change things such as the maximum number of iterations, step length,
or the method of computing area under a distribution. Given convergence, these
options should not signi�cantly a�ect the results. The options that have a direct
impact on the value of the parameter estimates are encompassed in extended EI.
These options will be discussed extensively later. All results reported for EI in this
article were obtained from the EzI program v.1.21 (11/6/96 release).

4Extended EI also includes a nonparametric version of the model, as well as other
options for setting priors on the covariates, constraints, and computational meth-
ods. \The EI model" is the model that is embodied in Chapter 16: \A Concluding
Checklist" (King 1997). Points from the checklist will be described throughout the
discussion of the extended model.
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all three assumptions of the basic model. However, as discussed in An-
solabehere and Rivers (1997) and as suggested in King (Chapter 9), the
crucial assumption concerns the correlation between the parameters and
the regressors, i.e., aggregation bias. It is possible for the parameters
to vary but still not be correlated with the regressors. In these cases,
aggregate data models will fare well. Clearly, then, the aggregate data
problem can be seen as a speci�cation problem. Achen and Shively
(1995) show that the speci�cation problem is not solved simply by using
a regression model speci�cation that would be correct for individual-level
data. If one can identify subsets of the data where the parameters do
not vary, then one can eliminate the problem of aggregation bias. Con-
stancy will exist within the subsets of data. However, identifying the
variables that will yield this propitious situation is extremely di�cult.
The extended EI model allows the addition of covariates for precisely
this purpose. In the hypothetical example, partisan leaning was the
necessary covariate. When partisanship is controlled, the parameters
are constant and all of the assumptions are ful�lled.

In practice, choosing these control variables is the crucial and most
di�cult part of aggregate data analysis. The aggregate data problem is
not solved by determining that additional variables need to be included
but, rather, by including the correct additional variables. EI provides
some diagnostics which purportedly aid a researcher in determining a
proper model speci�cation by signaling deviations from the model's as-
sumptions. King claims that \valid inferences require that the diagnostic
tests described be used to verify that the model �ts the data and that
the distributional assumptions apply" (King 1997, 21). I now turn to
analyzing how well the diagnostics are able to verify the appropriateness
of the assumptions of the model.

The Extended EI Model

Certainly, a researcher needs to know if a proposed model �ts the data
and if the necessary assumptions apply. Clearly, if the data do not meet
the aggregation bias assumption, the model needs to be modi�ed. In-
deed, EI is not meant to apply to every possible aggregate data problem
(King 1997, 158). In our hypothetical model, the assumptions of ba-
sic EI did not �t the data, though modifying the model by including
partisan leaning corrected this shortcoming.

The important question to ask is, with real aggregate data where
uncertainty abounds, how well are we able to assess whether the spec-
i�cation is correct and whether the assumptions �t the data? If the
assumptions do not �t the data, will we be able to determine how to
modify the model correctly? Are the EI diagnostics enough to unveil
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improper assumptions and to guide us to an appropriate model? In this
section, EI along with these diagnostics is tested on two sets of real data.

Data Set 1. The �rst data set was derived from a survey conducted
for the 1984 California general election by Bruce Cain and D. Roderick
Kiewiet.5 In total, the survey has 1,646 respondents and includes an
oversampling of ethnic minorities. The data were aggregated into 30
precincts. Since the data are at the level of the individual, the estimates
from the aggregate data models can be assessed against the true values.

In this example, the goal is to predict the percentage of college
graduates by race based solely on the aggregate data. The accounting
identity is

(% COLLEGE EDUCATED)

= (% BLACK)�B + (1�% BLACK)�W :

The known information for this problem is summarized in Figures 3
and 4. Figure 3 is simply a scatterplot of precincts with (% BLACK)
on the horizontal axis and (% COLLEGE EDUCATED) on the vertical axis.
Figure 4 is the diagnostic tomography plot for the data with �B on the
horizontal axis and �W on the vertical axis.6 For each precinct, there are
four quantities of interest. Two of these quantities, the (% BLACK) and
(% COLLEGE EDUCATED), are known while the other two, the percentage
of college-educated blacks, �B , and the percentage of college-educated
whites, �W , are unknown.

Each point in Figure 3 maps to one point in Figure 4, giving us
all four quantities of interest. The problem is that the mapping is un-
known. Any percentage of blacks and any percentage of whites could
be college-educated. However, using the accounting identity and the
method of bounds collapses the space of possible (�B ; �W ) values from
the whole space to a single line for each precinct (King, Chapter 6). In
Figure 4, the true values of (�B ; �W ) are marked by points on the lines.
In practice, all we know is that the true value lies somewhere along the
line. The problem thus can be rephrased as follows. We know that the
true (�B ; �W ) value lies along a line. How do we determine where along
the line it lies? All of our deterministic information has been used to

5Details on the sample can be found in Cain, Kiewiet and Uhlaner (1991).
6Achen and Shively (1995, 207{210) originally suggested the idea of graphing the

Duncan-Davis bounds and discussed some features of the resulting plots. Achen and
Shively observed, \The basic Duncan-Davis limits, aggregated across all the districts'
equations, de�ne the outer limits of any possible solution space" (1995, 208). King
applied such plots to real data, likewise observing that \the bounds and the lines
in this �gure give the available deterministic information about the quantities of
interest," and called the result a \tomography plot" (1997, 80{82).
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determine the lines in the tomography plot. To make any claims about
where the true value lies along the line, we must make some assumptions,
which may or may not be true.

With the OLS model, the constancy assumption is made. With
respect to the tomography plot, the assumption amounts to the claim
that all of the lines should intersect at one point. The extent to which
they do not intersect at that point is simply attributed to error. As we
can see from Table 4, the OLS estimates are not particularly close to
the truth and do not yield good substantive analysis of the problem.7

The point estimate for whites is closer to the truth than the point es-
timate for blacks, but it is still more than a standard error away. The
problem is that the percentages of college-educated blacks and whites
are far from being constant across precincts. In truth, the percentage
of college-educated blacks varies from under 1 to 90 percent depending
upon precinct. The percentage of college-educated whites does not di�er
as widely but varies considerably nonetheless, running from 36 to 70 per-
cent. Obviously, the assumption of constancy is likely to be troublesome
here.

EI makes di�erent assumptions for determining where the true val-
ues lie along the tomography lines. In particular, the assumptions of
the basic model will place the point estimate near the greatest density
of lines. This process is referred to as \borrowing strength" from other
observations to determine the true value for any given observation. In
essence, the model does not assume that there should be a single point
of intersection but it does assume that all of the lines should substan-
tially intersect in one common area. Implicit here is the unimodality
assumption: all of the lines are related to one common mode. Unfortu-
nately, this distributional assumption is also misplaced. An examination
of the individual-level data reveals that there are two groups of lines,
i.e., that two modes, not one, exist in the data. These two groups of
lines can be distinguished as one group which is associated with high-
income precincts and another group that is associated with low-income

7In these examples, \Truth" is actually an estimate of a true population parame-
ter. The estimate is based on a sampling from a population and thus the \truth" has
a sampling error component to it. However, in these examples, the respondents in
the survey will be considered the population universe. Hence, no standard errors are
reported for the \Truth." The numbers are simply an accounting of the data. This
is, in fact, the setup of both EI and Goodman. Neither EI nor Goodman incorpo-
rate the sampling error into the model. Both models assume that the marginals are
known. This assumption can be very in
uential in samples where the sample size is
small. To distinguish between sampling error and standard errors from the model,
the phrase \Model standard errors" is used. All values in the table are standard
errors from the model and do not incorporate sampling error.
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TABLE 4. Predicting Education Level by Race

Black White

Truth .5343 .5126
OLS .2322 .6042

(.2223) (.0584)
Basic EI .3404 .5747

(.3993) (.0845)
Extended EI .4904 .5399
nonparametric version (.0471) (.0117)

Extended EI .5060 .5360
covariate: Income (.0551) (.0137)

Extended EI .1660 .6207
covariate: Age (.3220) (.0802)

Model standard errors in parentheses.

precincts. Since the two sets of lines are not related to the same mode,
we would not want to \borrow strength" from one group of lines to
determine the mode of the unrelated other group of lines.

In addition, as in the hypothetical example earlier, viewing the
individual-level data reveals that aggregation bias also exists. Indeed,
while correlation of the parameters and regressors does not follow from
varying parameters, these two situations will commonly occur in tandem
in aggregate data. King acknowledges that \ : : : it pays to remember
that most real applications that deviate from the basic ecological in-
ference model do not violate one assumption while neatly meeting the
requirements of the others" (King 1997, 159). With regard to this par-
ticular data set, one should not expect the basic EI model, with its
erroneous assumptions, to provide particularly good estimates. And,
indeed, as we can see from Table 4, basic EI reports similar point esti-
mates and comparable standard errors to OLS. After accounting for the
standard errors, the point estimates are statistically indistinguishable.8

Since the basic EI model makes the wrong assumptions about the
data, we should expect some indication of this through the diagnostics.
The tomography plot in Figure 5 is the suggested diagnostic for deter-
mining modality. Here, we should �nd evidence of multiple modes in
the data. A mode is indicated by a mass of lines, preferably intersecting
lines. So two distinct groups of lines would indicate two modes. How-
ever, in our tomography plot, there is no evidence of multiple modes.9

8In general, one would not expect OLS and EI estimates to be much di�erent. The
reasoning is that when the assumptions of OLS are violated, the assumptions of EI
are also violated. The point at which the models diverge is when the OLS estimates
are beyond the bounds. In these instances, EI may provide better estimates.

9One should be cautioned that there is considerable uncertainty encompassed in
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Fig. 5. Data Set 1. Tomography Plot

If multiple modes did exist, we would want either to add covariates
to isolate the multiple modes or to use the nonparametric version of
the program to bypass the assumption of truncated bivariate normality.
Properly accounting for the modes will simultaneously solve the aggre-
gation bias problem. On the other hand, according to the logic conveyed
in \the checklist" (King 1997, Chapter 16), we note that the truncation
of the contour lines in the tomography plot is fairly heavy, and that
this is supposed to provide con�dence that the basic model should be
�ne (King 1997, 284). In addition, the results also do not seem sub-
stantively unreasonable, and this also supposedly provides credence for
the basic model. Based upon the diagnostics and reasoning suggested in
\the checklist," then, the basic model should be appropriate. Only our
knowledge of the truth tells us otherwise, that the basic EI model has
led us astray.

Suppose, however that the researcher did believe that the results
were not correct, for one reason or another. Perhaps the researcher be-
lieves that aggregation bias exists. Figure 6 is suggested in the Checklist
(item 10) as an indicator of aggregation bias (King 1997, 283). This plot

a search for multiple modes whether this search is through tomography plots or the
nonparametric density plot. If one really wanted to see multiple modes in Figure 5,
one could probably convince oneself that they exist. To boot, the nonparametric
plot might even provide some supporting evidence in this vein. In this case, multiple
modes do exist so one then needs to resolve the con
icting nature of the tomography
plot and the nonparametric plot. In other plots (e.g., see King, Figure 9.1a), many
modes will seem to exist in the tomography plot when, in fact, only one mode exists.
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Fig. 6. Data Set 1. Aggregation Bias Diagnostic

gives us some indication of the possible correlation between the Xs and
the �s. The true � values are unknown and lie on some unknown po-
sition along each line. Judging from these plots, aggregation bias may
exist or it may not exist. Especially for �b, neither conclusion is war-
ranted though both are possible and both hypotheses can be supported
by substantive beliefs. The pattern for �w might be increasing, imply-
ing a correlation, or it may be random, implying no correlation. This
diagnostic clearly has very limited utility in this application.

If one believes that aggregation bias does exist, one might try in-
cluding certain covariates to alleviate this problem. Certainly one could
make a credible argument for including income as a covariate. Income
clearly a�ects education, and it is well known that the two variables have
a strong relationship. Alternatively, one could make an equally credible
argument for including age as a covariate. Clear evidence exists that
the American population has become signi�cantly more educated over
time. Either of these two scenarios is reasonable based on qualitative
information and substantive beliefs.

The results of the extended EI models with these covariates are
reported in Table 4. As we can see, extended EI with income as a co-
variate does fairly well. Note, though, that extended EI with age as
a covariate produces signi�cantly di�erent results. An obvious prob-
lem with adding covariates is that King provides no method of choosing
covariates (outside of utilizing qualitative information and substantive
beliefs). However, selecting the proper covariates, or determining the
proper speci�cation, is the heart of the problem. Using the type of qual-
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itative information and substantive beliefs suggested in King's Chapter
16 is plainly inadequate. These criteria are subjective and can di�er
wildly between researchers. As our example indicates, these beliefs can
substantially a�ect our results yielding di�erent point estimates and dif-
ferent estimates of uncertainty. Disturbingly, the resulting substantive
claims from di�erent models are inconsistent. Given that this is the
case, how would a researcher choose one model's result over another?
How much faith should be placed on qualitative beliefs? Believing that
the data should be separated by income does not mean that income pro-
vides a true demarcation of the data. Formal and objective tests are
necessary. Visual examinations of the tomography plots are simply not
good enough.

Lastly, one might consider the nonparametric version of the model
since it does not depend on such a rigid distributional assumption. Un-
fortunately, it seems evident that in this case the standard errors from
the nonparametric model are erroneous. The true proportion of college-
educated whites di�ers from the nonparametric point estimate by more
than two standard errors. The nonparametric estimates are less precise
than the reported standard errors would suggest they are. How much
less is not clear. Worse, the diagnostic plots have not given us a clear
reason to pursue this model over the other models or to pursue the other
models over the nonparametric model.

The important question to ask here is, which model would we have
chosen if we had not had the individual-level results on hand? In which
model are the assumptions correct? The diagnostic plot in Figure 5 did
not indicate a bad model �t. Hence, the researcher might well feel justi-
�ed in reporting the results of the basic model along with a comforting
note that the diagnostics veri�ed the adequacy of the model. Basic EI
in reality did no better than OLS with its assumption of parameter con-
stancy. In addition, extended EI utilizing covariates did not converge
on one clear and consistent answer.

Lastly, we note that the estimates from the basic EI model are not
\incorrect." Like OLS, the estimate for �W is fairly accurate with a
fairly small standard error. Also similarly, the point estimate for �B ,
while not near the truth, correctly indicates a large degree of uncertainty.
These assessments are extremely useful. However, neither OLS nor the
basic EI model provides a good substantive understanding of the data.
Interpretation of both models would lead one to believe either that we
can make no comparisons between educational levels or that the level of
education among blacks is not likely to be as great as it is among whites.
In fact, the rates are almost identical in this data set. In addition,
while adding income as a covariate corrects the model, there is no clear
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TABLE 5. Predicting Vote for Thomas Hsieh by

Race

Chinese Non-Chinese

Truth .8849 .6300
OLS .9069 .4890

(.0338) (.0674)
Basic EI .8573 .6061

(.0628) (.1483)
Extended EI .8539 .6143
nonparametric version (.0114) (.0270)

Model standard errors in parentheses.

indication that this model should be believed over the others or that this
approach is more credible than the model that erroneously, as it turned
out, included age as a covariate. Our problem now is that we have a set
of \believable" models which yield an array of \solutions" but no clear
way of distinguishing good models from bad models.

Data Set 2. The second example examines data which were com-
piled by Larry Tramutola and Associates and include a total of 1497
respondents in 37 precincts. The target population was Asian Ameri-
cans in Northern California. The goal is to �nd a model which accurately
estimates the support for Thomas Hsieh in his bid for San Francisco City
Council. A researcher interested in his support among Chinese voters
who had only the aggregated precinct data on votes and ethnicity might
estimate an OLS model as

(% HSIEH VOTE)

= (1�% CHINESE)�N + (% CHINESE)�C + e:

Again, OLS and EI are tested, and the EI diagnostic tools are examined.
OLS results are reported �rst in Table 5. As we can see, these results

are good. Next, the EI estimates are reported. These results are also
quite good. Due to the large standard errors, in fact, the basic EI esti-
mates are again statistically indistinguishable from the OLS estimates.
The assessment of the results as good, of course, depends on our full
knowledge of the truth|a luxury never accorded in practice. Hence, to
assess our models more realistically, momentary ignorance of the truth
is feigned.

Observe the model diagnostics. The tomography plot is displayed
in Figure 7. A considerable amount of interpretative leeway is available
in assessing the plot. However, this �gure does not display any striking
evidence suggesting multiple modes or aggregation bias. One could ar-
gue for the basic EI model on the basis of the heavy truncation of the
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Fig. 7. Data Set 2. Tomography Plot

contours in the tomography plot, lack of evidence for multiple modes, or
a reasonable estimate from Goodman's regression. On the other hand,
extended EI might be necessary based on alternative qualitative beliefs,
a substantive sense that other variables may matter, or an uneasiness
with the distributional assumption.10 However, in this example, it is of
no consequence to the point estimates whether a single mode model or
a multiple mode model is chosen. The parametric model and the non-
parametric model give almost identical point estimates. The di�erence
is that the nonparametric model expresses substantially less uncertainty.
The ostensible precision is, in fact, misleading|the nonparametric point
estimate for Chinese voters is in reality more than two standard errors
from the true parameter value.

In this example, as in the two previous examples, it is di�cult to
pinpoint the most reasonable option. While the point estimates are sim-
ilar, the measures of uncertainty vary quite a bit. Is it most reasonable
or safest to assume the least amount of certainty? As always, the model
that is the most reasonable is the one in which the assumptions made
are most true. However, we are unable to make a good assessment here
of which model encompasses the most reasonable set of assumptions.
Since the diagnostics have limited usefulness, we are left with only our
qualitative beliefs to guide us. Again, we are presented with a set of
equally believable models and no method for choosing between them.

10King provides a list of these \tests" in the checklist (1997, Chapter 16). In
addition to simple qualitative beliefs, they include a scattercross plot, an examination
of the bounds and the contours, Goodman's regression line, and the tomography plot.
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Assessing EI

What do these examples suggest? EI represents a genuine advancement
to ecological inference in that it incorporates two elements that have
never previously existed together in aggregate data models. The com-
bination of the method of bounds and allowance for varying parameters
brings a new degree of e�ciency to aggregate data analysis. The point
at which caution is essential, however, is when the assumptions of the
model are inconsistent with the data. To a limited extent, one can gauge
the suitability of EI's assumptions for the data by the model diagnostics.
Hence, the model diagnostics should be used every time EI is employed.
However, the diagnostics are problematic in that they do not always sig-
nal deviations from the model even when they do exist. Alternatively,
the diagnostics sometimes point toward a poor model �t when the es-
timates are actually quite reasonable. In addition, the diagnostics are
based on visual assessments and substantive beliefs|two elements which
can be completely random but equally believable across researchers.

EI is appropriate if and only if the speci�cation is correct, i.e., if
and only if there is no correlation between the parameters and the re-
gressors. The problem is that one has no idea whether the speci�cation
is correct or not, and the diagnostics have limited utility in this regard.
EI does not bring one much closer to knowing the underlying structure
of aggregate data. EI merely provides a program through which one can
construct many di�erent model speci�cations. Herein lies a fundamental
and serious weakness of EI. Intuition can bring us only so far. Without a
formal method for determining how to extend the model, a researcher is
left with a wide variety of \reasonable models" and no way of assessing
whether any of these models is appropriate.

Clearly, aggregate data models should have formal diagnostics to
help determine a proper speci�cation. Covariates should be chosen on
the basis of the properties of well-known statistics rather than intuition
or qualitative beliefs. In particular, since the addition of di�erent covari-
ates may signi�cantly a�ect the resulting point estimates and measures
of uncertainty, it would be useful to have a measure which assesses the
likelihood that a covariate distinguishes between distinct subsets in the
data and thus alleviates the problem of aggregation bias. Such a statistic
is provided in other aggregate data models (Cho 1997). These statistics
are useful when employed in a switching regimes context or as an added
component in the context of EI.

In summary, a caveat is implored. Caution should never be thrown
to the wind in ecological inference. Never should a model be run without
a full understanding of the implications of its assumptions. No model
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should be treated as a black box solution to the aggregate data problem.
As with any model, EI is built upon assumptions, and these can be far
o� or right on target. The estimates therefore may also be far o� or
right on the true parameters. Substantive discussions of the results
of EI should thus always include a discussion of the assumptions, how
reasonable they are for the problem at hand, and how these assumptions
drive the results. Excitement about the advances to ecological inference
provided by EI should not be allowed to lead to insu�cient attention
to the strong and potentially inappropriate assumptions at the heart of
the model. The model is useful if and only if the assumptions �t.
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