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Political districting is an intractable problem with significant ramifications for political representation. Districts often are
required to satisfy some legal constraints, but these typically are not very restrictive, allowing decision makers to influence
the composition of these districts without violating relevant laws. For example, while districts must often comprise a single
contiguous area, a vast collection of acceptable solutions (i.e., sets of districts) remains. Choosing the best set of districts
from this collection can be treated as a (planar) graph partitioning problem. When districts must be contiguous, successfully
solving this problem requires an efficient computational method for evaluating contiguity constraints; common methods for
assessing contiguity can require significant computation as the problem size grows. This paper introduces the geo-graph,
a new graph model that ameliorates the computational burdens associated with enforcing contiguity constraints in planar
graph partitioning when each vertex corresponds to a particular region of the plane. Through planar graph duality, the geo-
graph provides a scale-invariant method for enforcing contiguity constraints in local search. Furthermore, geo-graphs allow
district holes (which typically are considered undesirable) to be rigorously and efficiently integrated into the partitioning
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1. Introduction

The boundaries of United States Congressional Districts
must be redrawn every 10 years in response to population
shifts measured by the national census. This process is an
example of political districting, which is the process of
dividing a geographic region into a set of districts, often
for the purpose of electing political representatives. While
relevant laws constrain some facets of the districting pro-
cess, these constraints typically are not very restrictive, and
therefore decision makers are able to exert influence over
district composition. Because these districts have signifi-
cant ramifications on political representation, many groups
(e.g., political parties, public interest groups) have conflict-
ing views on how these districts should be created. For
example, political parties might favor districts that are most
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likely to elect their candidates, while public interest groups
might prefer districts where elections will be more compet-
itive. Butler and Cain (1992) discuss the underlying princi-
ples that guide redistricting, while di Cortona et al. (1999)
provide numerical measures of some common redistricting
objectives. Because different groups would like to quickly
identify districting options that are most in line with their
objectives, they can view districting as a constrained opti-
mization problem. Bozkaya et al. (2011) present a case
where the districts produced by an optimization approach
were adopted by the city of Edmonton, Canada, demon-
strating the practical applicability of optimization-based
redistricting. Due to the diversity of districting objectives, a
general districting algorithm cannot be tailored to a specific
type of objective.
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The redistricting process typically is discrete in nature,
as the entire region is first discretized into a large but finite
set of small areas (called basic units or simply units) that are
then combined to form districts. One common requirement
is that these districts be contiguous. The discrete nature of
such problems, coupled with the presence of contiguity con-
straints, makes a graph the natural choice to model this
problem. A graph, G = (V, E), comprises a set of ver-
tices, V, and a set of edges, E, with each edge joining two
vertices. In districting applications, vertices represent the
basic units, and edges join pairs of adjacent units (i.e., units
with a common boundary). Under this construction, the
graph G is planar (i.e., it can be embedded in the plane such
that no two edges intersect other than at a common end-
point). A district is considered contiguous if the subgraph
induced by its vertices is connected. Grouping the units into
districts becomes a graph partitioning problem that seeks
to optimize the objective specified by the designer.

Graph partitioning is an intractable discrete optimization
problem. While many types of graph partitioning problems
exist, many that appear relatively simple have been shown
to be NP-complete in the general case (Garey et al. 1976).
Heuristics such as local search have been adopted to gen-
erate good (though suboptimal) solutions in a reasonable
time frame. Local search begins with and iteratively per-
turbs an initial solution until a stopping criterion is met;
under this paradigm, search time depends on (1) the number
of iterations until the stopping criterion is met, and (2) the
amount of time required to execute each iteration. Both of
these facets are influenced by a solution’s neighborhood
(i.e., the set of solutions that can be generated by perturb-
ing the current solution); a large neighborhood might per-
mit exploration of a large set of solutions in each iteration,
but evaluating the quality of these solutions requires addi-
tional computation. Computation can be reduced when the
underlying architecture of the problem informs the choice
of neighborhood.

In graph partitioning, the neighborhood can be adapted
to take advantage of the structure of the graph and its con-
straints. One key feature of districting is that each vertex
corresponds to a particular region of the plane (i.e., the
associated unit). This relationship suggests a second graph
whose edges draw the boundaries of these regions and
whose vertices are the points where three or more boundary
segments intersect. Both graphs are related through planar
duality, and can be simultaneously embedded in the same
plane (Whitney 1932). Though only the original graph
will be partitioned, geometry from the second graph can
illuminate decisions made about the original graph when
they are superimposed. Outside of districting, this corre-
spondence between vertices and regions of the plane can
also be observed in other geographic zoning applications
(e.g., Ricca and Simeone 2008, D’Amico et al. 2002),
as well as image segmentation (e.g., Wang 1998, Shi and
Malik 2000). This paper will adopt the more specific term
“zone” in place of the more general “partite set” or the
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more restrictive “district” to signify that the vertices in each
partite set correspond to a particular zone of the plane.
Similarly, “zoning” will be used in place of “districting.”

This paper presents a new model, termed the geo-
graph, that formalizes the dual relationship between the
two graphs present in zoning applications and demonstrates
how this connection can be exploited to more quickly
assess two types of zoning constraints: contiguity con-
straints and hole constraints. When local search perturbs a
set of zones (typically by transferring a single unit to a dif-
ferent zone), the contiguity of the new zones must be eval-
uated. One simple approach is to execute a graph search on
each of the affected zones, rejecting the perturbation if any
search fails to visit all of its vertices. Verifying the contigu-
ity of zone i in this approach requires O(|V;|) time, where
V. is the set of units in zone i. Such extensive computa-
tion is cumbersome when applied to large problems such as
creating United States Congressional Districts, where the
average number of census blocks per district in a state var-
ied from 9,495 (Hawaii) to 45,685 (New Mexico) after the
2000 Census (United States Census Bureau 2000, 2011).

By contrast, this paper will show how a geo-graph avoids
large-scale searches and assesses contiguity of the per-
turbed zones by examining only the units appearing on
the boundary of the transferred unit. This analysis requires
O(m(G)|R(v)|) time when transferring unit v, where m(G)
is the number of zones and R(v) is the set of units that
appear on the boundary of v. Hole constraints, common
in geographic zoning, prohibit any zone from being an
enclave of another zone. Although cited as important in
geographic zoning, they have yet to be rigorously inte-
grated into mathematical approaches to zoning (Tavares-
Pereira et al. 2007). A geo-graph identifies and enumerates
the holes of a zone in O(m(G)?) time by maintaining an
auxiliary graph that requires O(|R(v)|) time to update after
local search transfers unit v. For both types of constraints,
computation depends on two factors: the size of R(v) and
the number of zones, neither of which necessarily increases
with the number of units in the region. For example, con-
sider a region that is to be divided into five zones. If the
units that compose this region are arranged in a rectan-
gular grid, then |R(v)| < 8 regardless of its dimensions.
In this example, a geo-graph allows the designer to select
a finer grid with a much larger set of zoning options with-
out affecting the time complexity of contiguity assessments.
Such scale invariance is critical when solving large zoning
problems.

By design, the geo-graph algorithms described in this
paper determine whether a particular local search transition
is feasible under contiguity or hole constraints, not whether
the transition is beneficial to the goals of the designer; the
latter decision is left entirely to the designer. Therefore,
the geo-graph can be applied to zoning problems without
regard to their objective (e.g., maximum competitiveness,
maximum population balance) or mechanism for choosing
a feasible transition at each local search iteration (e.g., strict
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descent, tabu search, simulated annealing). This modularity
allows the geo-graph model to be incorporated into a large
number of zoning problems; it also means that using a geo-
graph will not affect the quality of solutions generated by
local search, but will allow these solutions to be generated
more quickly.

The paper is organized as follows. Section 2 surveys
existing work in graph partitioning and zoning that moti-
vates the development of geo-graphs. Section 3 formalizes
the structure and notation used in the geo-graph model,
whose compatibility with practical districting problems is
discussed in §4. Section 5 proposes a computationally effi-
cient method for identifying zone holes within the geo-
graph paradigm, while §6 reveals the formal relationship
between contiguity and hole constraints and develops com-
putationally efficient methods for evaluating zone contigu-
ity in local search. Section 7 discusses the particular case
of creating United States Congressional Districts in Kansas
to demonstrate how using the geo-graph model reduces
the amount of computation required to assess contiguity
when compared with simple search methods in practical
districting applications. Finally, §8 discusses these results
and draws conclusions about how geo-graphs can improve
existing local search approaches to partitioning planar
graphs with many vertices. Proofs of all theorems, lemmas,
and corollaries are included in an online companion. An
electronic companion to this paper is available as part of the
online version at http://dx.doi.org/10.1287/opre.1120.1083.

2. Background

Graph partitioning seeks to divide the vertex set of a graph
into two or more subsets; this division is frequently pre-
sented as an optimization problem, where the partition
is generated according to domain-specific constraints and
objectives. Most geographic zoning problems consider con-
tiguity and balance constraints, where a set of zones is
considered balanced if it distributes some quantity evenly
among its zones. For example, balance in political dis-
tricting requires districts to be approximately equipopulous,
while sales districts must balance workload among their
salesforce. Political districting objectives are influenced by
factors such as population demographics, voting patterns,
geography, district shape, and integrity of communities of
interest (Butler and Cain 1992), depending on the goals of
the designer. The political districting process of assigning n
units to k zones can be characterized by the mathematical
program

max obj(y),

st. L,<Pop;(y)<U, Vj=12,...,k,
Connj(y)zl Vji=1,2,...,k,
Emptyj(y)zo vVi=1,2,...,k,

where 7y represents the assignment of the units to their
zones, with I' representing the set of all such assignments
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(ie., || = k™), obj(7y) is a maximization objective reflect-
ing the goals of the designer, Pop;(y) is the population of
zone j under the assignments in 7y with upper and lower
bounds U, and L, defining the feasible range for the bal-
ance constraint, Conn;(7y) is an indicator function that
equals one when zone j is contiguous and zero otherwise,
and Empty;(7y) is an indicator function that equals one
when zone j is empty (i.e., no units have been assigned
to it) and zero otherwise; note that Empty;(7y) =0 is auto-
matically satisfied if L, > 0. This program can be realized
as a binary integer program when the state variable 7y is
represented as an n X n matrix of binary variables, v, ;, that
take a value of one if unit i is assigned to a zone centered
at unit j, and zero otherwise, where these units are taken
from the set of units, V. This formulation is adapted from
Drex] and Haase (1999); for i € V, element v, ; is equal
to one if and only if there is a zone centered at vertex i,
otherwise it is zero. Note that each zone contains exactly
one “center”’; other than being contained within the zone,
this center does not necessarily have additional meaning
with regard to the shape of the zone. The resulting binary
integer program is

max Ob](y)v (1)
st. Ly, ;<Y pvi;<Uy,; YjeV, (2)
ieV

Z?’j,,‘zk, 3)

Jjev
Yy,=1 VieV, @

jev
Vi i SV Vi,jeV, (5)

Y Vi LV, 21-18] Yjev
v €Uses N(5)—S veS

and SC(V-N(j)—Jj), (6)
'Yi,je{O,l} Vi,jeV, )

where for each unit i € V, p; is its population and N (i)
is the set of units adjacent to it. The constraint in Equa-
tion (2) enforces population balance, while Equation (3)
requires that there are exactly k zones, Equation (4) ensures
that each unit is assigned to exactly one zone, Equation (5)
mandates that each unit is assigned to a zone whose cen-
ter has been established, Equation (6) enforces zone con-
tiguity, and Equation (7) defines the binary nature of 7, ;.
Enforcing the constraints in Equation (6) requires a num-
ber of inequalities that increases exponentially with the
number of units, making it intractable for large problems.
A fluid flow approach to contiguity yields a mixed-integer
program formulation that avoids this exponential increase
by adding continuous decision variables measuring flow
volume, although this formulation is also intractable in
large problems (Shirabe 2005, 2009). While many varia-
tions of graph partitioning exist beyond political district-
ing, most are similarly intractable. For example, the Min-
imum Cut into Equal-Sized Subsets problem asks whether
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a graph, G V E , with two marked vertices, v, v,
V, and a positive integer, W , can have its vertex set
divided into two subsets, V; and V, (with V; 'V, and

Vi, V, V), such that v; V,, v, V,, V, V,, and

xy E x Viy V, W (i.e., the “cut” refers to
edges that have endpoints in different sets). Although this
problems lacks the contiguity requirement inherent to geo-
graphic zoning problems, Minimum Cut Into Equal-Sized
Subsets has been shown to be NP-complete (Garey et al.
1976).

Heuristic approaches have been developed to mitigate
the intractability of these graph partitioning problems. The
most well-known graph partitioning heuristic for minimum-
cut problems is the Kernighan-Lin algorithm (Kernighan
and Lin 1970), which initially partitions the vertices into
two sets of equal cardinality and iteratively improves this
partition by determining a series of vertex trades, where
one vertex from each set is transferred to the other, thereby
maintaining an equal number of vertices in each set.
Fiduccia and Mattheyses (1982) refine this algorithm by
replacing vertex trades with single vertex transfers; balance
is enforced by bounding the cardinality of each set rather
than enforcing strict equality. Both algorithms reduce com-
putational effort by recycling objective computations across
iterations. When a single vertex is transferred, as in the
Fiduccia-Mattheyses algorithm, the minimum-cut objective
is affected only by edges that change from “cut” to “uncut”
or vice versa; these edges will be a subset of those incident
to the transferred vertex, which typically make up a small
portion of the entire edge set.

Graph partitioning problems become more complex
when one imposes contiguity constraints, such as in many
geographic zoning problems (e.g., Hansen et al. 2003,
Nygreen 1988, Wang 1998, Becker et al. 1998). Conceptu-
ally, zone contiguity requires that for every pair of points
in the interior of a zone, one can draw a curve between
them that passes through only the interior of that zone.
While enforcing zone contiguity with inequality constraints
is intractable, graph contiguity can be assessed through a
graph search algorithm; beginning at one vertex, this search
determines whether all other vertices can be visited by
traversing the edges of the graph. Although attractive in its
simplicity, the time complexity of evaluating graph conti-
guity for a planar graph is linear in its number of vertices,
and the associated computation can be substantial when the
graph is large.

If the current zones are contiguous, and local search
transfers one vertex, vV, from its current set (the send-
ing set) to another set (the receiving set) in each iteration,
then all zones but these two will remain contiguous after
this transition. The receiving set will remain contiguous if
and only if at least one of the edges incident to the trans-
ferred vertex has a vertex of the receiving set as its other
endpoint; this condition can be checkedin O N v time.
Contiguity of the sending set is more difficult to assess;
Ricca and Simeone (2008) propose checking its contiguity
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by marking the neighbors of v that are in the sending set,
temporarily removing v from the sending set, and begin-
ning a graph search of the sending set at one of the marked
vertices. The sending set remains contiguous if and only
if this search visits all of the marked vertices. While this
search requires O V, time, where V; C V is the sending
set, it may visit relatively few vertices when the sending
set remains contiguous. However, when this set becomes
discontiguous the search will visit every vertex in one of
its remaining components before arriving at this conclu-
sion. Furthermore, there are cases when the search might
need to visit every vertex in the sending set even when
the sending set does not become discontiguous. For exam-
ple, consider the hatched zone in Figure 1. Each vertex in
the hatched zone has two hatched neighbors; if this vertex
is removed, the only path between these neighbors passes
through every vertex in the hatched zone. As the num-
ber of vertices in the graph increases, the average size of
each partite set will grow accordingly, and the computa-
tional cost of a search-based approach that might need to
visit nearly all the vertices in the sending set will limit
the effectiveness of partitioning algorithms in large zoning
problems. While this search can be made more efficient for
zoning applications using dynamic graph models for pla-
nar graphs such as those proposed by Frigioni and Italiano
(2000) and Eppstein et al. (1992), which require polyloga-
rithmic time, rather than linear time required by traditional
search algorithms, the time required to assess zone con-
tiguity will still increase with the size of the graph. Fur-
thermore, using these models might require complex data
structures and algorithms that might make them unattractive
to practitioners. Macmillan (2001) discusses how contigu-
ity of the sending set can be assessed by examining the
“switching points” that occur on the boundary of the trans-
ferred unit, noting the zone holes can influence this anal-
ysis; the geo-graph model rigorously integrates zone holes
into contiguity analysis of the sending set, developing a
formal graph theoretic framework that analyzes contiguity

Figure 1. Example 6 8 grid region with two zones.
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by only examining units that share a boundary with the
transferred unit.

The concept of zone holes is similar to that of zone con-
tiguity in that holes are defined by curves drawn in the
interior of a zone. A hole occurs when one can draw a
simple closed curve in the interior of a zone, such that the
entire area enclosed by the curve is not part of that zone;
in geographic zoning, these holes typically are consid-
ered undesirable (e.g., di Cortona et al. 1999, Ricca 2004,
Tavares-Pereira et al. 2007). While holes can be easily iden-
tified by a person viewing the zones as drawn on a map,
identifying them computationally is more challenging and
has not been rigorously incorporated into graph partitioning
algorithms (Tavares-Pereira et al. 2007). A compactness
objective tends to penalize zones that violate contiguity and
hole constraints (di Cortona et al. 1999) and hence, often
leads to zones that do not violate these constraints. In polit-
ical districting, compactness typically is encouraged as a
surrogate for more germane objectives, such as preserv-
ing the integrity of natural communities of interest (Butler
and Cain 1992), and impedes overt tampering with districts
for political gain, commonly called gerrymandering. There-
fore, maximum compactness objectives frequently appear
in optimization approaches to political districting, where
many numerical indices of a district’s compactness have
been proposed (e.g., di Cortona et al. 1999, Bozkaya et al.
2003). However, compactness is not typically a district-
ing requirement from a legal standpoint, and its inclusion
can bias a local search algorithm, leading the search away
from optimal solutions that satisfy contiguity and hole con-
straints but whose districts are not compact. While com-
pactness might encourage desirable district attributes in
many cases, optimizing these attributes directly eliminates
the bias that compactness injects into the optimization pro-
cess. Efficient methods for directly evaluating contiguity
and hole constraints are needed.

To identify zone holes, one must know how the units are
arranged in the plane. In a geo-graph with n units, each
unit corresponds to one of n finite subregions of the plane.
Drawing the unit boundaries in the plane divides the plane
into n 1 areas, with the additional area corresponding to
the infinite area outside the unit boundaries; it is assumed
that this infinite area is contiguous. This drawing can be
interpreted as an embedded planar graph whose dual can be
embedded on the same plane (Whitney 1932). This embed-
ding of the dual graph is constructed as follows: one vertex
of the dual graph is placed in the interior of the area of
each unit, and an edge is drawn between two vertices of
the dual graph for each unbroken segment of border that
they share in the original graph (excluding isolated points);
since there could be several such segments, the dual might
be a multigraph. Each dual edge connects its endpoints
by traveling through the interiors of their corresponding
areas of the original graph, crossing at a single point on
their common border (except the border’s endpoints). For
example, Figures 2(a) and 3(a) depict two example regions
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Figure 2. Construction of the dual for a general region.

(b) Unit boundaries with
superimposed dual graph

(a) Unit boundaries with
faces labeled

e
v
e

whose dual graphs are superimposed in Figures 2(b) and
3(b), respectively. The dual graph summarizes the entities
(i.e., subregions) and adjacencies that are used when creat-
ing zones. By this construction, both graphs are simultane-
ously embedded in the same plane. Their superimposition
can provide additional information about the structure of

the graph and will be useful when assessing contiguity con-
straints and holes in graph partitioning.

JAER

3. Geo-Graph Definitions and
Terminology

Geo-graphs provide a modeling framework for planar graph
partitioning problems when each vertex corresponds to a
particular finite area (i.e., unit) of the plane. This sec-
tion defines the geo-graph, focusing on how the bound-
aries of these units dictate its structure. The geo-graph, G

V E B z ,augments the usual vertex and edge sets with
two functions: a boundary function, B, and a zoning func-
tion, z. The zoning function z partitions the vertex set by
assigning each vertex to a single zone. The number of such
zones is defined by m G , and therefore z is a function from
V to the set of zones, defined as M G 12 m G

Figure 3. Construction of the dual of a 3 4 grid-

shaped region.

(a) Unit boundaries with
faces labeled

(b) Unit boundaries with

vs| ve| V7| vg

Yol Vio| V| V12
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Furthermore, for a set of zones K € M(G), let the set of
vertices in these zones be defined as V(K) ={ve V: z(v) €
K}; if k € M(G), then the notation V (k) will be used rather
than V({k}). The contiguity of a zone is equivalent to the
connectivity of the subgraph induced by the vertices in that
zone. To this end, geo-graph G is called zone-connected if
for every zone k € M(G) the subgraph induced by V (k) is
connected.

The boundary function defines the relationship between
the vertices in V and their corresponding units by associat-
ing each vertex, v € V, with the simple closed curve, B(v),
that constitutes the boundary of that unit. Two assumptions
are made about these curves. First, drawing these curves
on the plane divides the plane into exactly |V |+ 1 regions;
therefore, any point on the plane that does not fall on or
inside one of the B(v) curves must belong to the single infi-
nite area outside of the geographic region. Second, B(v) is
a single curve for each v € V, which prevents any unit from
comprising discontiguous pieces or containing any holes.
If either assumption is violated, these violations typically
can be reconciled by either adding units to fill in empty
areas (when the curves divide the plane into more than
|V|+ 1 regions) or merging two or more basic units (when
B(v) consists of more that one curve). In general, these
assumptions are not very restrictive and will be suitable for
many applications.

While the vertices in V' correspond to |V| of the regions
of the plane defined by B, the region corresponding to the
infinite area outside of these units is considered through an
additional dummy vertex, v,, with the function B extended
such that B(v,) denotes the simple closed curve that sep-
arates the infinite area outside the region from the units.
Although v, serves a different purpose than the vertices in
V (e.g., it does not represent a unit and will not be a part
of any zone) and is therefore excluded from V, there are
cases when explicit consideration of v, will be useful. For
this reason, define the augmented set of vertices as V, =
V U {v,}; furthermore, v, is always assigned to a dummy
zone, z(v,) =0, and the augmented set of zones is denoted
by My(G)={0,1,2,...,m(G)}. With the addition of v,
the geo-graph G is exactly the dual of the curves prescribed
by the boundary function, B.

Through duality, the boundary function implicitly defines
the edge set, E, for the geo-graph, and the neighbor-
hood of vertex v € V; is defined in the standard way
as N(v) = {x € V: vx € E}. However, these adjacencies
reflect only vertices that share segments on their common
border. Although units sharing isolated points on their com-
mon border should not be considered adjacent for the pur-
poses of contiguity, knowing what pairs of units share such
isolated points provides valuable information about the
arrangement of units in the plane. Therefore, the augmented
neighborhood of v is defined as R(v) = {x € V,: B(x) N
B(v) # @}. By design, N(v) € R(v), as the augmented
neighborhood provides a less restrictive definition of adja-
cency. For example, vertex v, in Figure 3(b) has N(v,) =
{3, V6, vg, v11} and R(v;) = {v,, V3, vy, V6, Vg, Vig, V115 Vi ks
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and N(v,) is a strict subset of R(v;), whereas vertex v,
in Figure 2(b) has N(v,;) = R(v;) = {vs, vg, Vg, V19, V11 }-
In general, both neighborhoods are symmetric; for any two
vertices x,y € V in any geo-graph, both of the following
hold: x € N(y) if and only if y € N(x), and x € R(y) if
and only if y € R(x). Furthermore, the set of zone neigh-
bors of vertex v in zone k € M,(G) is defined by N,(v) =
N(v)NV(k), and v is called neighbor-connected in zone
k when N, (v) is contained in a single component of the
subgraph induced by R(v) NV (k).

To support both neighborhoods, the definition of a path
must be extended. A path, P = (py, p,, ..., p;), is defined
as a sequence of vertices where p,_; € N(p;) for 2<i<j
and no vertex is repeated. If this sequence has p, € N(p;),
then P is called a cycle (typically denoted by C); each
edge can appear only once in a cycle, and hence a two-
vertex cycle must contain two distinct edges between these
vertices. A strand is similarly defined as a sequence of ver-
tices, S = (s, 5;,...,5;), where s;_; € R(s;) for 2<i <
and no vertex is repeated; if s; € R(s;), then S is called
a closed strand (typically denoted by C%). Following from
the restriction on cycles, a closed strand can be composed
of only two vertices when there are at least two distinct
segments (or isolated points) on the shared boundary of
their units. When discussing the visitation order of the ver-
tices in a path or strand, the forward order (i.e., from p, to
p; or 5y to s;) is assumed by convention.

While R(v) enumerates the set of vertices whose units
share at least a single point on B(v), the curve specified by
the boundary function also determines the order in which
these vertices are encountered while traveling around B(v).
As B(v) is a simple closed curve, cutting this curve at two
distinct points yields two simple curves that connect those
two points but do not otherwise intersect. Each perimeter of
vertex v € V lists the sequence of units encountered while
traveling along one of these curves. Because the same ver-
tex could be encountered more than once over one of these
curves, the perimeter might not conform to the definition of
a path. Rather, each perimeter is a walk, which is defined
in the same way as a path but might repeat vertices and
edges (West 2001). These perimeters can be constructed as
follows.

DEFINITION 1. For any vertex v € V, choose any x,, x, €
R(v); choosing x, = x, is permissible when B(v) N B(x,)
is not a single segment or isolated point. Define an x,,
X,-perimeter on v as an x,, x,-walk that is constructed as
follows:

1. Let a, be the point on B(v) N B(x,;) where an edge
between these two vertices crosses the shared border (or an
isolated point on the shared border), and let a, be the point
on B(v) N B(x,) where an edge between these two vertices
crosses the shared border (or an isolated point on the shared
border). If x; = x,, then a, and @, must be distinct and
cannot both appear on the same segment of B(v) N B(x,).
Let L € B(v) be a curve that connects a, and a, on B(v).
Let # = a, be the current position on L, W = (x,) be the
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sequence of vertices encountered between a, and ¢ along
L, and r x,; be the most recently visited vertex on P.

2. Advance ¢ along L until it reaches either a,, or
a point p where one or more boundary curves inter-
sect L. If it reaches a,, return the walk W. Otherwise, the
curves intersecting L at p mustbe B r B w, , B w,

B w, B w, , B w, forsome sequence of vertices
w; W, w, R v . Append this sequence of vertices
to the end of the walk W, update r+ p and r w,, and
repeat Step 2.

If vy W, then W is called broken.

m>

To demonstrate, consider the two vg, v,;-perimeters
on v, in Figure 2(b). The perimeter that travels clock-
wise around the boundary of v,, is vg vy v, V53 , while
the perimeter that travels counter-clockwise around the
boundary is vg v; v,y v;; . Neither perimeter is broken.
In contrast, the v,, v,,-perimeters on vs in Figure 3(b)
are v, v, v V), traveling clockwise and v, vy vy vy
traveling counter-clockwise; the counter-clockwise perime-
ter is broken.

Duality gives the edges of a geo-graph a specific embed-
ding in the plane, and hence each cycle is associated with
a simple closed curve composed of its edges. This curve
separates the plane into two regions: the region inside
the closed curve and the infinite region outside. A similar
closed curve can be defined for each closed strand; as for
a cycle, this curve is composed of curves drawn between
neighboring vertices in the strand. This curve corresponds
either to an edge connecting these two vertices or to a curve
segment that passes through the interiors of the units asso-
ciated with the vertices and one of the isolated points on
their shared border. If the closed curve associated with a
closed strand does not intersect itself, then this is a sim-
ple closed curve, and the closed strand is called tangle-
free; a cycle is one example of a tangle-free closed strand.
By dividing the plane into two regions, the simple closed
curve associated with a tangle-free closed strand can clas-
sify all vertices in the graph based on which region the
vertex occupies. Definition 2 defines the set of vertices that
are internal and external to a tangle-free closed strand.

DEFINITION 2. For any tangle-free closed strand C5 V
and any vertex v V  CS, v is said to be internal to C5
if and only if vertex v is located inside the simple closed
curve associated with C5. Define Int C5 as the set of ver-
tices that are internal to this curve, and Ext C5 A
Int C5 C% as the set of vertices that are external to
the curve. By definition, v, Ext CS , as v, represents an
infinite area that cannot be contained within the finite area
internal to the curve.

Figure 4 depicts the edges of a single cycle on the ver-
tices of the region shown in Figure 2. The cycle has the
vertex sequence C v, V3 Uy VU, Uy Vyg Vg U4 - Based
on the simple closed curve drawn by the edges of C, its
internal vertices are Int C Vs v; vg , and its external
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Figure 4. The edges of acycle C v, v; vy vy, vy
Vo Vg V4 , Which has Int C Vs Uy Vg

and Ext C Vg Vy VU3 .

A
5

=

vertices are Ext C vy U, V3 . It should be noted that,
though they are related, the terms internal and interior
are not equivalent. Consider any tangle-free closed strand:
while the interior of the area enclosed by its curve con-
tains an infinite number of points, the internal vertices of
the strand occur at a finite set of those points. Based on
the definition of internal vertices, a zone will be called sur-
rounded when its vertices lie completely inside the curve
drawn by a cycle of vertices from another zone.

A

DEFINITION 3. A zone k M G is called surrounded if
there exists a cycle of vertices, C V j , for some j
M G k,suchthat V k Int C . In this case it is said
that C surrounds zone k; more generally, zone j is said to
surround zone k.

This definition demonstrates the relationship between
zone holes and surrounded zones. When a zone is sur-
rounded, it must appear in a hole in the surrounding zone,
since the curve associated with the surrounding cycle only
passes through the interior of the surrounding zone, and the
entire area of the surrounded zone lies inside that curve.
Furthermore, due to the restrictions on the boundary func-
tion, B, holes and surrounded zones are interchangeable;
any hole must be filled with one or more zones. One obsta-
cle remains in declaring equivalence between holes and sur-
rounded zones: there are only finitely many simple closed
curves associated with cycles, while there are an infinite
number of simple closed curves that can be drawn in the
interior of a zone. Later in this paper, Lemma 6 will show
that a hole exists if and only if it lies within the simple
closed curve associated with a cycle, demonstrating that
holes and surrounded zones are equivalent.

Forazone k M G ,let k M G  k be the set
of zones surrounded by zone k. For each zone in j k,
there must be a closed curve through the units of zone k
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such that all the units of zone j are enclosed by this curve.
If another zone j' € I1(k) — j must also be enclosed by this
curve (for any such curve), then j and j' are said to be in
the same pocket of zone k. Definition 4 shows how the set
of surrounded zones TI(k) can be decomposed into classes
of pockets.

DEFINITION 4. Let G = (V, E, B, z) be a zone-connected
geo-graph. Define I1(k) € M(G) — k as the set of zones
surrounded by zone k € M(G). Furthermore, define the
pocket set of zone k as {IL, (k), I1,(k), ..., IL 4 (k)}, such
that U7 T, (k) = TI(k) and II, (k) N IT, (k) = @ for
1 <i, <i, < w(k), where for each 1 < j < m(k) and
p.q € V(II;(k)), there is a p, g-strand, S, such that
S C V(I (k)).

As Theorem 1 will show, knowing the pocket set of a
zone allows zone contiguity in local search to be assessed
by examining the vertices in R(v) when vertex v is being
transferred. Lemma 9 shows how the pockets of a zone can
be efficiently identified by examining an auxiliary graph,
H(G), defined in Definition 5, that summarizes the inter-
zone adjacencies of geo-graph G.

DEFINITION 5. Define H(G) = (V',E’) as an auxiliary
graph to zone-connected geo-graph G = (V, E, B, 7). This
auxiliary graph has V' = M,(G), such that vertex k in
H(G) corresponds to zone k in G. For any two vertices,
ky, k, € V', there is an edge kk, € E’ if and only if there
exist vertices, x;, x, € V such that z(x,) = k,, z(x,) = k,,
and x, € R(x,).

The structure of H(G) will evolve as local search trans-
fers units between the zones, and therefore the pocket set
of each zone will also evolve. Section 5 discusses how the
structure of the auxiliary graph can be updated in O(|R(v)|)
time after vertex v migrates to a different zone in local
search.

4. Compatibility with Practical
Political Districting

By emphasizing zone contiguity in large graph partitioning
problems, the geo-graph model is specifically tailored to
solve practical political districting problems. This section
demonstrates its suitability by examining the construction
of United States Congressional Districts.

Every two years, voters in each district elect a repre-
sentative to the United States House of Representatives.
Under the “one person, one vote” principle, the popula-
tions of these districts must be approximately equal. Every
10 years, a national census measures population shifts in
the country; district boundaries must be redrawn to accom-
modate these shifts. First, population shifts at the national
level are used to apportion seats among the states based
on state populations; a state might gain or lose seats if its
population rises or falls relative to the other states. Second,
if a state is apportioned multiple representatives, it must
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partition its area among the same number of contiguous
districts. Each district must be contained entirely within an
individual state, and hence each state’s redistricting pro-
cess is independent of the other states. While there are rare
occasions when other constraints arise, such as legally man-
dated “‘majority minority” districts that prevent a geograph-
ically concentrated minority populations from being diluted
among several districts, these two constraints (contiguity
and equal population) are the primary factors in political
redistricting.

The input data required to use the geo-graph model
are available through government sources. To assess con-
tiguity, the geo-graph requires both the standard and aug-
mented neighbor sets for each unit (i.e., N(v) and R(v) for
each v € V,). Using geographic information system (GIS)
software (e.g., ArcGIS), these data can be extracted from
GIS shapefiles published by the United States government
(United States Census Bureau 2010b); while some census
blocks might not have boundaries that are simple closed
curves, these violations are rare, can be identified using
GIS software, and can be addressed with only superficial
impact to the solution space. Population data for enforc-
ing population balance constraints, as well as demographic,
voting pattern, and shape data used to compute objec-
tive values within the optimization process are also avail-
able from publicly accessible databases (e.g., United States
Census Bureau 2010a, Minnesota Population Center 2004,
Missouri Census Data Center 2010).

The United States Census Bureau collects and publishes
population data for census blocks, which are the smallest
geographic units considered in the census. In geographic
terms, census blocks are typically bounded by entities such
as roads, rivers, and other natural frontiers. These data can
be clustered to form more coarse levels of detail (e.g., block
groups, census tracts), but census blocks represent the finest
level of detail for population data and therefore provide the
most flexibility when designing districts. Each state con-
tains a very large number of census blocks: between 17,483
(Delaware) and 675,062 (Texas) during the 2000 Census
(United States Census Bureau 2011). By contrast, each
state is divided into a relatively small number of districts;
at 53 districts, California had the most after the 2000
Census, while seven states (Alaska, Delaware, Montana,
North Dakota, South Dakota, Vermont, and Wyoming) each
encompassed a single district (United States Census Bureau
2000). In the remaining 43 states, the number of census
blocks per district ranges from 9,495 (Hawaii) to 45,685
(New Mexico), with an average of 22,516 census blocks per
district. In all cases, the number of census blocks exceeds
the number of districts by a factor of more than 9,000. The
size of the solution space in each districting problem is
astronomical. Among the states apportioned more than one
seat, Hawaii has both the fewest seats (two) and the fewest
census blocks (18,990), yet there are 2'8%% — 1 > 1057
ways to generate these districts when contiguity and bal-
ance constraints are neglected. While limiting choices to
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only contiguous and balanced zones significantly reduces
this number, the set of feasible solutions remains enormous.
Furthermore, assessing contiguity in local search using a
simple search method might need to visit every unit in
the examined district. For problems on the scale of United
States Congressional Districts, this approach will prevent
local search from exploring the solution space quickly and,
hence, a more efficient method to assess zone contiguity is
needed.

5. ldentifying Surrounded Zones

While the basic structure and properties of a geo-graph
were discussed in §3, this section further develops these
properties and demonstrates how they can be used to solve
large zoning problems efficiently. For example, while defin-
ing surrounded zones might be interesting from a the-
oretical perspective, the results presented in this section
show that surrounded zones (1) are equivalent to holes and
(2) can be identified in a computationally efficient way.
By contrast, the only avenue afforded by the definition of
surrounded zones is to enumerate the cycles composed of
vertices from a single zone and determine whether another
zone is internal to each. Such a combinatorially exhaustive
approach would require a Herculean degree of computa-
tion. The results presented in this section bridge the gap
between theoretical novelty and computational practicality.

Although this section deals primarily with surrounded
zones, the focus on contiguity constraints is not abandoned,
as these concepts are naturally intertwined. For example,
when local search removes vertex v from zone z(v), the
remainder of the zone is contiguous if and only if the
subgraph induced by V(z(v)) — v is connected. Lemma 1
shows that assessing the connectivity of this graph is equiv-
alent to identifying a cycle in V(z(v)) for each pair of
vertices in N, (v). While finding such a cycle for each
pair of vertices can also be computationally expensive, the
equivalence of these two conditions will be needed in the
proofs of several later theorems and lemmas.

LEMMA 1. Let G =(V,E, B, z) be a zone-connected geo-
graph. For any v € V, the subgraph induced by V(z(v)) —v
is connected if and only if for every pair of vertices x,y €
N,)(v), there is a cycle C C V(z(v)) in which x,v,y
appear consecutively.

When a vertex appears on a tangle-free closed strand, its
boundary curve and the curve associated with the strand
will intersect. Both are simple closed curves, with two
intersection points defined where the strand curve enters
and exits the boundary. If the boundary is cut at these
two points, the two simple curves that remain are exactly
those associated with the two perimeters on the vertex; one
can show that one of these perimeter curves lies inside the
simple closed curve associated with the tangle-free closed
strand and one lies outside (either perimeter curve may
also intersect, but not cross, the curve associated with the
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strand). Lemma 2 extends the perimeter curve classifica-
tions to the vertices that are visited along these perimeter
curves.

LEMMA 2. Let G = (V,E,B,z) be a geo-graph, C5CV
be a tangle-free closed strand on which x,v,y € V
appear consecutively, and W,, W, € R(v) be the two x, y-
perimeters on v.

A. For some j € {1,2}, W,NN(v) € C°UInt(C*) and
W;_;NN(v) S CSUExt(C®).

B. If C =CS is a cycle, then for some j € {1,2}, W, <
CUnt(C) and W;_; € C U Ext(C). Furthermore, W, is
unbroken and therefore is a x, y-walk on R(v) N (C U

Int(C)).

While this lemma allows one to classify vertices as inter-
nal and external to a tangle-free closed strand, Lemma 3
shows how classifying one vertex as either internal or exter-
nal to such a strand allows other vertices to be classified
in a methodical and straightforward way and allows these
classifications to be extended to entire zones. For example,
Lemmas 3A and 3B allow the classification of one vertex
to be extended to other vertices in either its neighborhood
or augmented neighborhood, depending on whether C5 is
a cycle.

LEMMA 3. Let G = (V,E,B,z) be a geo-graph, with
C5 C V being any tangle-free closed strand, and x € V —
C5. The following properties hold:

A. For every y € N(x) — C5, y € Int(C®) if and only if
x € Int(CS).

B. If C = CS is a cycle, then for every y € R(x) — C,
y € Int(C) if and only if x € Int(C).

C. If C=C% is a cycle and B(x) N B(v,) # &, then
x & Int(C).

D. If y e V — C5 such that x € Int(C5) and y € Ext(C5),
then each x, y-path, P, has PNCS # @ .

E. If C=CSis a cycle and y € V — C such that x €
Int(C) and y € Ext(C), then each x, y-strand, S, has SN
C+0.

F. If G is zone-connected with z(x) =i for some i €
M(G), C = CS is a cycle, and C C V(j) for some j €
M (G) — i, then zone i is surrounded by C if and only if
x € Int(C).

While conceptually simple, these lemmas are powerful;
for example, Lemma 3B allows every vertex in V — C to be
classified by classifying only one vertex in each component
of the subgraph induced by V — C, rather than classify-
ing each vertex individually. However, a method to actu-
ally classify any particular vertex as internal or external to
a cycle is not clear without drawing the curve traced by
the cycle, determining the area it encloses, and checking
whether the vertex is contained in that area; carrying out
this analysis could require significant computation.

Rather than create a cycle and then ask whether a par-
ticular vertex is internal or external to it, one can designate
a set of vertices and ask whether it is possible to construct
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a cycle to which these vertices are internal. For specific
types of vertex subsets, Lemma 4 can answer this question.
If a tangle-free closed strand is sought (rather than a cycle),
Lemma 5 is used.

LEMMA 4. Let G V E B z be a geo-graph. If there

is a subset of vertices, U 'V, such that for every u,,

u, U, there is a u,, u,-strand on the vertices of U, and

Bu Bu, for all u U, then there is a cycle, C
wu Ru U, suchthat U Int C .

LEMMA 5. Let G V. E B z be a geo-graph. If there
is a subset of vertices, T 'V, such that for every t, t,
T, there is a t,, t,-path on the vertices of T, and B t

B v, for all t T, then there is a tangle-free closed
strand, CS .+ Nt T ,suchthat T Int C5.

The ability to construct a surrounding cycle in Lemma 4
shows one way to identify surrounded zones. Lemma 6
demonstrates that it is possible to draw a simple closed
curve through the interior of a zone such that another zone
lies entirely inside this curve if and only if the first zone
contains a cycle that surrounds the second zone. There-
fore, only curves traced by cycles need to be considered
when identifying holes. This result is similar to using edges
to verify contiguity; although edges represent only finitely
many of the infinite number of simple curves that can be
drawn between two units, these other curves do not need
to be considered when assessing contiguity.

LEMMA 6. Let G V E B z be a zone-connected geo-
graph with distinct zones i, i, M G . There is a cycle,
C Vi, such that V i, Int C if and only if every
vertex in'V i, is contained in the area bounded by a simple
closed curve, L, that passes through the interior of the area
associated with zone i, (i.e., the union of the areas of the
units associated with vertices in 'V i, ).

While the previous lemmas in this section refer to sin-
gle vertices or single zones that are surrounded by a cycle,
Lemma 3B can show that if two augmented neighbors
are in different zones, then if one vertex is internal to a
cycle, the other will also be internal; if the graph is zone-
connected, Lemma 3F can show that this cycle either sur-
rounds both zones or neither zone. This observation leads
directly to the classification of surrounded zones into pock-
ets, as in Definition 4, which are applied in Lemma 7.

LEMMA 7. Let GV E B z be a zone-connected geo-
graph. For any zone j M G, let C 'V j be a cycle
in zone j. For any 1 i J, if there is a vertex x
V., J suchthatx Int C,thenV j Int C .

To demonstrate how pockets are identified, consider the
two examples in Figure 5. In both cases, there are three
zones: D, D,, and D;, where zones D, and D; are sur-
rounded by zone D, (ie., D, D, D, ). In Fig-
ure 5(a), each surrounded zone is in a separate pocket of
zone D, since there is no shared point on their common bor-
ders(ie., D, 2, | D, D, ,and , D, Dy ).
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Figure 5. Identification of pockets in a zoning prob-
lem with zones D,, D,, D5, where D,

D, D, .

(a) Zone Dy has two pockets (i.e., (b) Zone D, has one pocket (i.e.,
n(Dy) =2), where I1)(D) = {D,}  m(D,) = 1), where I1;(D,) = II(D))
and TIy(D)) = {D;}. ={(D,. D;}.

D, D,

From the perspective of holes, one can draw a simple closed
curve through the interior of zone D, that encloses only one
of the surrounded zones. By contrast, the two surrounded
zones share a single point on their border in Figure 5(b),
and therefore both zones are in the same pocket of D,
(ie., D 1 and | D, D, D, D, ). Fur-
thermore, no simple closed curve drawn through the interior
of zone D, can enclose only one of these zones; it must
enclose both zones or neither zone.

Following from the example in Figure 5(b), two sur-
rounded zones must be in the same pocket of a surrounding
zone if their is at least one common point on their shared
boundary. Any point on the boundary of a zone must also
be a point on the boundary of one of the units in that zone,
which implies that these pockets can be defined in terms
of the augmented neighborhoods of the units in geo-graph
G. Definition 5 shows that an auxiliary graph to G, defined
as H G , can efficiently translate these intervertex relation-
ships into their corresponding interzone relationships.

In addition to concisely summarizing classes of sur-
rounded zones, the auxiliary graph also allows these sur-
rounded zones to be identified in a computationally efficient
way. Lemma 8 shows that one can identify whether zone i
M G surrounds zone j M G i by removing vertex i
from H G and beginning a graph search at vertex j; if this
search does not visit vertex 0, then zone i surrounds zone
J. Lemma 9 extends this result to show that the pocket set
of zone i can be identified by removing i from H G and
enumerating the components of the remaining graph.

LEMMA 8. Let GV E B z be a zone-connected geo-
graph, with associated auxiliary graph H G V E .
For any pair of zones, i j V0, there is a cycle, C
V i in G, such that C surrounds zone j if and only if there
is no j, 0-path in H G that does not pass through i.

LEMMA 9. Let GV E B z be a zone-connected geo-
graph, with associated auxiliary graph H G V E .
For any zone k M G, let Ty T, T,, be the compo-
nents of the subgraph induced by V. k in H G, with
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0€T,. Zone k has w(k) =m — 1 pockets, with pocket set
defined by 11,(k) =T, for 1 <i < mw(k).

Lemma 9 suggests a computationally efficient method
for identifying surrounded zones. The auxiliary graph
H(G) has m(G)+ 1 vertices and potentially (’"(GZ)“) edges,
and hence, a simple graph search algorithm (e.g., depth-
first search) can enumerate these components in O(m(G)?)
time. In zoning applications the number of zones is typi-
cally much smaller than the number of units, and hence,
surrounded zones (and the pockets in which they reside)
can be identified with relatively little computation. Further-
more, the complexity of these computations does not grow
with the number of vertices in G as long as the same num-
ber of zones are being created; pocket identification is scale
invariant to how finely or coarsely the region is divided into
units.

One obstacle in implementing the auxiliary graph, H(G),
is that its edges are determined by the zoning function z,
and hence, edges may be added or removed as units migrate
from one zone to another during local search. To allow
H(G) to evolve as units are transferred, the auxiliary graph
can be implemented using a square matrix with dimen-
sion |V’|, such that element (i, j) of this matrix is equal
to [{(x,y) € Vy x Vo: x € V(i),y € V(j), x € R(y)}|, the
number of pairs of augmented neighbors such that one is
in each of zones i and j. Then, edge ij € E’ if and only
if element (i, j) of this matrix is greater than zero. This
implementation is attractive from a local search perspec-
tive, as this matrix can be updated efficiently each time a
vertex is moved to a new zone, requiring only one addi-
tion and one subtraction for each vertex in its augmented
neighborhood. When vertex v is transferred to a new zone,
the entries of the matrix can be updated in O(|R(v)|) time.
As with identifying pocket sets, such computations will be
scale invariant to the number of units being considered,
as long as the size of the augmented neighborhoods remains
consistent at different scales. For example, if the units are
arranged in a grid pattern, then |R(v)| < 8, regardless of
the grid’s dimensions. The change in the average size of
R(v) for a practical political districting problem will be
discussed in §7.

6. Main Results

When local search partitions a geo-graph, G = (V, E, B, z),
into contiguous zones, enforcing contiguity can be com-
putationally expensive, even when each iteration transfers
only one vertex v € V from its current zone to a different
zone. This expense comes when evaluating the contiguity
of zone z(v), which will lose vertex v. A natural ques-
tion is: under what conditions will this approach become
computationally expensive, and can these expenses be con-
trolled? The results presented in this section demonstrate
how these expenses can be controlled by considering sur-
rounded zones to the extent that they become scale invariant
to the number of vertices in the graph.
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To see how surrounded zones can inform contiguity
assessments, note that the graph search method used by
Ricca and Simeone (2008) verifies contiguity by finding an
x, y-path on V(z(v)) — v for each pair of vertices x,y €
N,y (v). Appending v to each path produces a cycle C C
V(z(v)) on which x, v, y appear consecutively. Therefore,
Int(C) must either contain (1) only vertices of V(z(v)) —v,
in which case there is an x, y-path on R(v) N V(z(v)) €
V(z(v)) — v by Lemma 2B; or (2) at least one vertex that
is not in V(z(v)), in which case C surrounds a zone by
Lemma 3F. In the first case, a path can be found that passes
through only vertices in R(v); by considering surrounded
zones, Theorem 1 shows that both cases can be assessed
by examining vertices in R(v).

THEOREM 1. Let G = (V,E,B,z) be a zone-connected
geo-graph with v € V. The subgraph induced by
V(z(v)) —v is connected if and only if N, (v) is con-
tained in a single component of the subgraph induced by
R()NV(I(z(v))U{z(v)}), and for every 1 < j < m(z(v)),
N,y (v) is contained in a single component of the subgraph
induced by R(v) NV (My(G) —11;(z(v))).

To see how these conditions verify contiguity, con-
sider the example region whose units are depicted in Fig-
ure 6(a). The units in the unhatched zone compose a single
cycle that surrounds the hatched zone. Suppose that ver-
tex v, € V is to be transferred from the unhatched zone
to the hatched zone. For the first condition of Theorem 1,
R(v;) N V(II(z(v,)) U {z(v;)}) contains five vertices in
R(v,): three hatched units in the row above v, and the
two unhatched units to either side. The subgraph induced
by these vertices has a single component, which therefore
must contain both unhatched neighbors of v,; conceptu-
ally, this condition allows graph search to pass through the
surrounded zone rather than traveling around it. For the
second condition, 7(z(v,)) =1, and R(v,) N V(M,(G) —
IT,(z(v,))) contains both unhatched neighbors of v, and the
vertex v,. As in the first condition, the subgraph induced
by these vertices has a single component, which includes
both vertices in N, )(v;). Having satisfied these two con-
ditions, Theorem 1 can conclude that the unhatched zone
will remain contiguous after v, is removed. By contrast,
if the next transfer were to move vertex v, € V to the
hatched zone (Figure 6(b)), this transfer would satisfy the
second condition of Theorem 1 but violate the first, because
the unhatched zone no longer surrounds the hatched zone.
To see how the second condition can be violated, consider
the example depicted in Figure 6(c), where v, is to be trans-
ferred to the hatched zone. The first condition of Theorem 1
is satisfied because the hatched zone is surrounded by the
unhatched zone. However, R(v,) NV (M,(G) —I1,(z(v,)))
contains the three unhatched neighbors of v, as well as v,.
The subgraph induced by these vertices has two compo-
nents: one containing v, and the two horizontal neighbors
of v, and a second containing only the unhatched neigh-
bor positioned above v,. Because the unhatched neighbors
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Figure 6.

(a) Unit v; can be removed from
the unhatched zone.

(b) Unit v, cannot be removed
from the unhatched zone.

Assessing contiguity constraints in a 6 6 grid-shaped region with two zones.

(c) Unit v; cannot be removed
from the unhatched zone.

V2

Vi

Vi

of v, are not all contained in one component, the second
condition is violated, and Theorem 1 can be used to con-
clude that the unhatched district will become discontiguous
if v, is removed.

Theorem 1 shows that assessing contiguity of zone z v
after the removal of v can be accomplished by examining
only the vertices in R v . To ensure that transferring v to its
new zone will neither eliminate zone z v nor cause its new
zone to become discontiguous, additional conditions must
be added. Theorem 2 presents a complete set of conditions
for identifying feasible local search transitions. Using geo-
graphs, this vertex transfer is represented by creating two
zoning functions: zone z; v contains v before the transi-
tion, and zone z, v contains v afterward.

THEOREM 2. Let G, V E B z, and G,

V. E B z, be two geo-graphs describing the same
region, where z, x 7, x foreveryx V v, z; v k
for some k M G, zyv, G hasV j for every
j M G,, and G, is zone-connected. Geo-graph G, is
zone-connected with V j for every j M G, ifand
only if the following conditions are satisfied:

N. v is contained in a single component of the

v
subgraph induced by Rv V. z; v z7v  inGy,
For every 1 j z1 v, N, v is contained in
a single component of the subgraph induced by R v
V M, G, jav inGy
N, , v isnot empty in Gy,

N,

, v U isnot empty in G,.

The conditions established by Theorem 2 will not reject a
feasible transition, nor will they allow an infeasible transi-
tion. The first two conditions of Theorem 2 are taken from
Theorem 1 to establish that zone z; v remains contiguous.
The third condition ensures that zone z; v 1is not elimi-
nated by the transition (i.e., it still contains at least one
vertex), while the fourth guarantees that zone z, v is con-
tiguous. Both conditions can be verified by examining the
vertices in N v R v , and therefore local search transi-
tions can be classified as feasible or infeasible by examin-
ing only vertices whose unit boundaries share one point or
more with the boundary of the unit being transferred.

RIGHTSE LI MN iy

While Theorem 1 considers the case when there might
be surrounded zones, the conditions it checks become sim-
pler when there are no surrounded zones. The following
corollary establishes this simplification using the neighbor-
connectedness of v in zone z v (i.e., N,, v is contained
in a single component of the subgraph induced by R v
Vzv ).

COROLLARY 1. Let G V E B z be a zone-connected
geo-graph with no surrounded zones. For any v 'V, the
graph induced by V z v v is connected if and only if v
is neighbor-connected in zv M G .

Like Theorem 1, this corollary determines whether it is
possible to remove v from zone z v without disconnecting
it. Theorem 3 adds conditions to guarantee that v can be
added to its new zone without disconnecting or eliminating
any zones or creating any surrounded zones. This set of
conditions can be used in geographic zoning applications
that forbid the creation of holes.

THEOREM 3. Let G, VE Bz and G, V E
B z, betwo geo-graphs describing the same region, where
Z, X 7y X foreveryx V vz, v k for somek
MG, zyv, G hasV j for every j M G,
and G, is zone-connected with no surrounded zones. Geo-
graph G, is zone-connected with no surrounded zones and
Vi for every j M G, if and only if the following
conditions are satisfied:

v is neighbor-connected in zone z; v in G,

N, v is not empty in G,

v

N, , v isnot empty in Gy,

The subgraph induced by V.= z, v in H G, is
connected.

Only the fourth condition differs in purpose from the
conditions in Theorem 2; this condition guarantees that no
surrounded zones will be created by moving v to zone
Z, v . Although Theorem 3 identifies feasible local search
transitions when surrounded zones are forbidden, the abil-
ity to make such a transition depends on the existence of a
current feasible solution. While zone-connected geo-graphs
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are fairly simple to generate computationally, creating geo-
graphs that lack surrounded zones is more difficult. Initial
feasible solutions could be constructed by hand, but trans-
lating these hand-made solutions into a format usable in
local search could be tedious, particularly when the num-
ber of units is large. An automated method avoids this
obstacle. The final theorem in this paper provides a method
for constructing zone-connected geo-graphs without sur-
rounded zones. In particular, it shows how a new zone can
be added to a geo-graph without being surrounded.

THEOREM 4. Let G, = (V,E, B, z,) be a zone-connected
geo-graph with no surrounded zones and m(G,) =k, and
let ve V be any vertex such that:

e v is neighbor-connected in z,(v), and N, ,(v) is not
empty,

e cither there are two vertices, x,, X, € R(v), such that
21 (xy) #21(x,), or B(v) N B(v,) # 2.
Define the function z,, such that for all x € V —v, z,(x)
z,(x), and z,(v) = m(G,) + 1. Then the graph G, =
(V,E,B,z,) is a zone-connected geo-graph with no sur-
rounded zones, with m(G,) =m(G,) + 1.

Clearly, the only way to create a one-zone geo-graph is
to place all units in the same zone. Using Theorem 4, new
zones can be iteratively added to this single-zone solution
until the desired number of zones is achieved. While the
geo-graphs created by this mechanism will be very sim-
ple (i.e., m(G) — 1 zones with one unit each, and one
zone with |V| — m(G) + 1 units), this starting point can be
appropriately randomized by executing a number of ran-
domly selected feasible transitions to reach a more reason-
able initial state for local search.

Theorems 2 and 3 demonstrate how local search transi-
tions that transfer v € V to a new zone can be classified
as feasible or infeasible by examining only the vertices in
R(v). These examinations can be performed using “off the
shelf” data structures and search algorithms. If an adja-
cency list realization of the planar subgraph induced by
R(v) for each v € V is stored, along with an adjacency
matrix representation of the auxiliary graph H(G), assess-
ing the conditions of Theorem 2 for vertex v requires
O(m(G)* + m(G)|R(v)|) time; enumerating the pockets
of zone z,(v) requires O(m(G)?) time using search, the
first two conditions of Theorem 2 require O(m(G)|R(v)|)
time to search up to m(G) subgraphs of R(v) correspond-
ing to these pockets, and the last two conditions require
O(|N(v)|) time. Similarly, assessing the conditions of The-
orem 3 for vertex v requires O(m(G)*+ |R(v)|) time; the
first three conditions can be assessed in O(|R(v)|) time,
while the last condition requires O(|R(v)|) time to con-
struct H(G,) from H(G,) and O(m(G)?) time to test the
contiguity of V' — z,(v) in H(G,). Finally, the conditions
of Theorem 4 for v € V can be assessed in O(|R(v)|) time.
While more efficient algorithms and data structures could
improve these times, these simple implementations show
that the time required to assess these conditions for vertex
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v € V is influenced primarily by the number of zones and
the size of R(v), neither of which will necessarily increase
as the number of vertices increases.

7. Numerical Example

The benefits conferred by the geo-graph are entirely in
the form of increased computational efficiency; using a
geo-graph will not change the path that local search takes
through the solution space, but will reduce the amount of
computation required for local search to traverse this path.
While the previous sections have discussed the theoreti-
cal contributions of the geo-graph model, its contributions
when creating geographic zones depend on the character-
istics of the zoned region. This section considers the cre-
ation of United States Congressional Districts in the state of
Kansas following the 2000 Census, which involves divid-
ing this state and its 2,688,418 residents into four districts.
Basic units are available at several granularities, including
counties and census blocks. Kansas contains 105 counties
and 173,107 census blocks; while census blocks clearly
provide a much larger solution space from which dis-
tricts can be chosen, exploring this solution space requires
significantly more computation than exploring the solu-
tion space afforded by counties. Geographic adjacency data
were obtained from United States Census Bureau (2010b),
while populations from the 2000 Census and district assign-
ments for the 109th United States Congress were extracted
from Missouri Census Data Center (2010).

Regardless of whether the basic units of G are chosen to
be counties or census blocks, the number of zones remains
constant; four United States Congressional Districts will be
constructed from these units. Of particular interest, then, is
how shifting from counties to census blocks impacts the
size of R(v). Each county has 3 to 8 units in R(v), with
a mean of 5.73 units, variance of 1.13 units?, and median
of 6 units. Each census block has 2 to 44 units in R(v),
with a mean of 7.09 units, variance of 6.60 units?>, and
median of 7 units. Although moving from counties to cen-
sus blocks represents more than a thousand-fold increase
in the number of units, the average size of R(v) increases
by only 24%. The distribution of |R(v)| for census blocks
exhibits a much longer tail than the distribution for coun-
ties. However, relatively few units exhibit large values of
|[R(v)|; 80% of census blocks have |R(v)| < 8, 90% have
|R(v)| < 10, and 99% have |R(v)| < 16. While some addi-
tional computation will be required to assess contiguity for
census blocks, this additional computation is very small
when compared to the growth in the number of basic units.

Of the 173,107 census blocks in Kansas, 1,764 have
boundaries that are not a single simple closed curve.
Of these blocks, 1,704 have holes. Such boundary viola-
tions can be addressed by merging these blocks with the
blocks that reside in their holes. This merging reduces the
size of the solution space without eliminating any feasible
solutions; if the blocks in such a hole cannot form a district
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on their own, then they must be in the same district as the
block that surrounds them. In Kansas, the maximum pop-
ulation contained in any single hole is 738 people, about
0.1% of the population in the least populous district in
Kansas, and certainly less than even the most lenient lower
bound on district population. The 60 remaining units have
multiple pieces; these violations can be addressed in several
ways with only superficial impact on the solution space.
After preprocessing the census blocks to eliminate these
violations, 170,445 blocks remain, with the other blocks
eliminated through merging. The statistics reported in the
previous paragraph reflect the set of preprocessed census
blocks.

Both simple search and geo-graph search evaluate dis-
trict contiguity and hence will return the same outcome
for any vertex v € V (i.e., whether zone z(v) remains con-
tiguous after removing unit v). Therefore, the only differ-
ence between these algorithms is how much computation
they require to reach this outcome. While the size of R(v)
influences the time complexity of contiguity assessments
for geo-graph search, the actual amount of computation
required to carry out these assessments provides a more
meaningful comparison with a simple search approach that
runs in O(]V (i)|) time when local search removes a block
from zone i € M(G). Because both methods assess con-
tiguity by searching some subgraph of G, the number of
edges visited during these searches is a good measure of
computation. For simple search, it is assumed that the sub-
graph induced by each V(i) is stored separately and hence,
simple search visits only edges with both endpoints in
V(i). For geo-graph search, it is assumed that the sub-
graph induced by each R(v) is stored and hence, geo-graph
search visits only edges with both endpoints in R(v). How-
ever, any individual geo-graph search can visit only a sub-
set of the vertices in R(v) (i.e., those not contained in a
particular set of zones); because vertices outside of this
subset are also contained in R(v), geo-graph search may
visit edges with (1) both endpoints in the desired subset,
or (2) only one endpoint in the subset and the other end-
point elsewhere in R(v). Each search terminates success-
fully (i.e., z(v) remains contiguous) when it visits all the
vertices in N, (v), and unsuccessfully (i.e., z(v) becomes
discontiguous) if it cannot visit all these vertices; for geo-
graph search, this termination is due to Theorem 1, while
for simple search this termination is proposed by Ricca
and Simeone (2008). While Theorem 1 requires an addi-
tional search for each pocket of z(v), the current districts
in Kansas have no pockets, and therefore only a single geo-
graph search is required for each block.

Under the district assignments of the 109th United States
Congress, both search methods are applied to each cen-
sus block in Kansas to determine whether removing that
block violates district contiguity. A block v € V is omitted
if (1) all of its neighbors are in district z(v) (i.e., N, (v) =
N(v)), or (2) the block has at most one neighbor in dis-
trict z(v) (i.e., [N, (v)| < 1). In the former case, the block
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cannot be moved into a new district; such a transition would
cause this new district to become discontiguous. In the lat-
ter case, v satisfies Lemma 1 trivially; one can conclude
that v can be removed from zone z(v) without conduct-
ing a search. Under these restrictions, 1,940 of the 170,445
census blocks in Kansas require search. This proportion
is relatively small, as the existing districts are noticeably
compact, with relatively few blocks on the district bound-
aries. This high level of compactness is also noticeable in
the outcomes of these searches, as 1,809 of the 1,940 cen-
sus blocks tested can be removed without violating district
contiguity.

Executing a geo-graph search on all 1,940 blocks
required approximately 0.00289 seconds of CPU time on a
2.67-GHz quad-core processor running Windows 7 (com-
putations were executed using a single core, as the imple-
mentation was not parallelized). By contrast, simple search
required 2.96 seconds using breadth-first search (BFS) and
22.3 seconds using depth-first search (DFS); times are aver-
aged over ten repetitions for BFS and DFS, and over 1,000
repetitions for geo-graph search. Table 1 summarizes the
number of edges visited by each type of search. Unlike
the statistics in Table 1, search times for simple search
do include time to visit edges with only one endpoint in
the subgraph, but these additional edges compose less than
1% of the edges visited in these searches and hence have
minimal impact on computation time. Both BFS and DFS
are implemented using a list of vertices to be explored;
for BES this list is a queue, while in DFS it is a stack.
When a vertex is explored, the search visits each neighbor
and adds it (if applicable) to the appropriate end of the list
of vertices to be explored and hence an edge is consid-
ered visited when either of its endpoints is explored. From
Table 1, it is clear that the geo-graph search visits a much
smaller number of edges: 7.92 edges on average, as com-
pared to 11,449 edges (BFS) or 91,894 edges (DFS) for
simple search. Furthermore, the number of edges visited by
geo-graph search is better controlled than simple search;
each geo-graph search visits between 1 and 73 edges, while
simple search may visit up to 396,660 edges. This discrep-
ancy can be explained by the size of the subgraph being
searched. Each geo-graph search considers a subgraph of
at most 44 blocks (the maximum value of |R(v)|), while

Table 1. Statistics for the number of edges visited by
geo-graph search, simple breadth-first search,
and simple depth-first search (all statistics but
sample size measure numbers of edges).

Search type Geo-graph Simple (BFS) Simple (DFS)

Mean 7.92 11,449 91,894

Std. dev. 5.98 57,789 129,562

Min. 1 0 0

Max. 73 396,660 396,660

Median 7 37.5 5,105.5

Sample size 1,940 1,940 1,940
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Table 2. Statistics for the number of additional edges visited by simple breadth-first and depth-first search as compared
to geo-graph search under different conditions (all statistics but sample size measure numbers of edges).
Simple Cannot Can remove
All blocks visits fewer remove block block

BFS DFS BFS DFS BFS DFS BFS DFS
Mean 11,441 91,886 —1.23 —1.28 168,428 168,428 72.9 86,343
Std. Dev. 57,788 129,560 0.64 0.75 151,739 151,739 171.3 126,012
Min. —6 —6 —6 —6 —6 —6 -2 -2
Max. 396,658 396,658 -1 -1 396,658 396,658 3,877 396,648
Median 30 5,099 -1 -1 198,860 198,860 28 3,672
Sample size 1,940 1,940 94 60 131 131 1,809 1,809

each simple search considers a subgraph with thousands of
vertices.

For vertex v € V, each search continues until it visits
the set of vertices in N, (v); in simple search, this set
makes a very small portion of the blocks in a district,
and hence, the number of edges visited is highly depen-
dent on the path that the search takes though the district.
This observation also explains why DFS visits, on aver-
age, many more edges than BFS: DFS tends to travel away
from v and, by extension, away from the blocks in N, (v).
Of the 1,940 searches, DFS visits fewer edges than BFS
in only 263. For both types of simple search, the median
number of edges visited is much smaller than the mean,
implying a skewed distribution where many searches visit
relatively few edges and some searches visit a very large
number of edges. Table 2 directly compares the number of
edges visited in each type of search, showing that some of
this skewness is explained by the outcome of each search;
geo-graph search visits far fewer edges that simple search
when removing the block violates contiguity, with more
modest savings when contiguity is maintained. This table
also shows that simple search visited fewer edges than
geo-graph search for less than 5% of the investigated ver-
tices, yielding only marginal improvement of 1.23 to 1.28
edges on average. Taken together, these results demonstrate
the ability of geo-graph seach to visit relatively few edges
when assessing district contiguity when compared to sim-
ple search.

8. Conclusion

The geo-graph model introduced in this paper provides
an efficient structure for large graph partitioning prob-
lems when each vertex corresponds to a particular area of
the plane, such as those encountered in geographic zon-
ing problems. The geo-graph model supplies scale-invariant
procedures to (1) evaluate the contiguity of the each par-
tite set during local search and (2) numerically identify
any holes that appear in each partite set. The scale invari-
ance of contiguity assessments is tightly tied to the size
of the augmented neighborhood, R(v); the key result is
that contiguity can be assessed by examining only these
vertices. The size of R(v) does not necessarily increase
with the size of the graph; from a practical perspective,
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§7 shows that moving from counties to census blocks in
the state of Kansas increases the number of units by a
factor of more than 1,600 (from 105 counties to 170,445
census blocks), while the average size of |R(v)| increases
by a factor of only 0.24 (from 5.73 units to 7.09 units),
demonstrating that the units considered in practical prob-
lems might scale well even when they are not strictly scale
invariant. In contrast, the time complexity of assessing con-
tiguity with simple search grows linearly with the size of
the graph, discouraging practitioners from considering large
districting problems that occur in practice.

The geo-graph model has been tailored to integrate
duality-related correspondences between the plane graph
summarizing unit adjacency and the plane graph describ-
ing unit boundaries. While this tailoring restricts this model
from being applied to more general graphs, the computa-
tional savings provided by this tailoring can be substantial
when the model can be applied. Furthermore, this structure
remains modular to other aspects of partitioning. It does
not restrict the user to a particular type of optimization
objective, nor does it assume that any constraints other
than contiguity will be imposed; although it enumerates the
holes in each zone, these holes need not play a role in
the actual optimization process. Modularity in objectives is
particularly important in political districting, because dif-
ferent stakeholders in the districting process might want
to consider a wide variety of different and conflicting
objectives.

The time consumed to assess contiguity constraints
makes up a portion of the total time spent in local search.
As the number of units increases, using geo-graphs to
evaluate these constraints will reduce computation when
compared with simple search. From a broader perspective,
increasing the number of units also leads to larger solu-
tion neighborhoods and possibly more local search itera-
tions to algorithm termination. Geo-graphs cannot affect
these facets of local search. Although geo-graphs can elim-
inate unnecessary computation associated with increasing
problem size by exploiting the geometry of the problem,
the growing computational costs required by other facets
of the problem might be unavoidable, and hence choosing
an appropriate granularity for the problem at hand remains
a critical skill for successfully finding solutions of high
quality.
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