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Abstract

In a bivariate context, we consider ill-posed inverse problems with incomplete theoretical and data information.
We demonstrate the use of information theoretic methods for information recovery for a range of under-identified
choice problems with more unknowns than data points.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider the problem of information recovery in the case of bivariate discrete
distributions when data exist only in the form of marginal totals. Conventional procedures for this
problem are typically based on strong assumptions involving finitely parameterized specifications. The
substantive theories that motivate these models and estimation rules rarely justify such restrictions. Within
this context, we demonstrate an alternative approach to information recovery that has the following
characteristics: i) the observables exist only in the form of macro or aggregate outcome data; ii) the
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corresponding micro data in many cases is not only unobserved but unobservable; iii) information
concerning the underlying data sampling process may be partial, incomplete, and insufficient to identify a
unique family of feasible parametric models; and iv) consistent with these limited theoretical and data
situations, information recovery possibilities exist only in the form of an ill-posed pure inverse problem.
To cope with these types of situations, in the Sections ahead, we specify the binomial correlated processes
as an ill-posed inverse problem and demonstrate how information theoretic methods may be used to
provide a solution basis to illustrate the information recovery possibilities. We illustrate these methods
with two examples, one on consumer choices in the purchase of bacon and eggs and one on voting and
candidate choice.

2. The bivariate model

In order to examine this problem, we first provide a notational base. Designate the outcomes of the
random variables as Yj=0, 1, 2, …, J and Yk=0, 1, 2, …, K. The observed information is then
Nk ¼

P J
j¼1 Njk , Nj ¼

PK
k¼1 Njk , and N ¼

P J
j¼1

PK
k¼1 Njk . Our objective is to formulate a pure inverse

problem that will permit us to recover estimates of Njk, the unobserved outcomes, by using only the
observed aggregate marginal data. The unobserved choice or behavior outcomes may be expressed in
terms of the observed row and column proportions, nk=Nk /N and nj=Nj /N, and the proportion of
consumers in each category pjk=Njk /Nj=njk /nj, where

PK
k¼1 pjk ¼ 1. In this context, pjk is the

conditional probability and j is the conditioning index.

2.1. Modeling behavior as an ill-posed pure inverse problem

If the conditional probabilities, pjk, in the interior cells of Table 2 were known, we could derive the
unknown behavioral response or choices as Njk=pjkNj. However, because the conditional probabilities in
many problems are unobserved and not accessible by direct measurement, we face an inverse problem
where indirect, partial, and incomplete aggregate data must be used to recover the unknown conditional
probabilities. Some structure is provided by the realization that the conditional probabilities, pjk, must
satisfy the additivity condition,

PK
k¼1 pjk ¼ 1, and the column sum conditions,

P J
j¼1 pjkNj ¼ Nk . The

column sum conditions give us the relationship

nk ¼
XJ

j¼1

njpjk ; ð1Þ

for k=1,…, K. To formalize our notation, we let x=(n1 n2 ⋯ nJ)′ represent the (J×1) vector of
proportions, j=1,…, J, and let y=(n1 n2 ⋯ nK)′ represent the (K×1) sample outcome vector of vote
proportions for k=1,…, K. The relationship among the observed marginal proportions and unknown
conditional probabilities may be written as

yV¼ xVP; ð2Þ

where the component P=(p1 p2 ⋯ pK) is an unknown and unobservable (J×K) matrix of conditional
probabilities, and pk=( p1k p2k ⋯ pJk )′ is the (J×1) vector of conditional probabilities associated with the
k th group.
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The formulation in (2), connecting the unknown and unobservable proportions, is in the form of a pure
ill-posed inverse problem, where y=( y1, y2, …, yk) is a finite-dimensional observation vector, X is a
known linear operator that is non-invertible, and p is an unknown high dimensional parameter vector. The
inverse problem is to recover the unobservable p's based on the observations, y and X. This general
formulation captures a frequently occurring problem where a function must be inferred from insufficient
information that specifies only a feasible or plausible set of functions or solutions. In other words, this is a
pure ill-posed inverse problem that is fundamentally underdetermined and indeterminate because there
are more unknown and unobservable parameters than data points on which to base a solution.
Consequently, prima facie, using traditional rules of logic, insufficient sample information exists to solve
the problem using traditional rules of logic.

2.2. Information theoretic formulation and solution

To implement the model of behavior introduced in Section 2, we must determine how to represent the
data and how to choose the criterion or objective function. The representation of the data is discussed in
connection with (1) and (2). Because of the ill-posed nature of the inverse problem (2), traditional
estimation methods cannot be used to recover the unknown pjk. One possibility is to introduce structure in
the way of creative assumptions, parametric or otherwise. To avoid adding extraneous information that the
researcher usually does not possess, we make use of the information theory contributions of Claude
Shannon (1948, 1949), in choosing a criterion function. Shannon began with an entropy measure of
uncertainty in a random variable, Y, assuming a finite number of values, y1, y2, …, yn, with probabilities,
p1, p2, …, pn. He then defined the uncertainty or information, H (Y ), in Y as

$HðYÞ ¼ p1 log p1 þ N þ pn log pn ¼ $
X

i

pi lnð piÞ: ð3Þ

A far reaching generalization of Shannon's Theory is the maximum entropy principle enunciated by
Jaynes (1957). The maximum entropy (MaxEnt) principle or criterion favors, out of all distributions
consistent with a given set of data constraints, the distribution that maximizes entropy.1

Under the Shannon and Jaynes maximum entropy estimation criterion, the pure inverse model (2) may
be formulated as

argmin
pjk

XJ

j¼1

XK

k¼1

pjklnð pjkÞ; ð5Þ

1 The MaxEnt principle or criterion, $
P

i pilnðpiÞ, is a member of the Cressie–Read (Cressie and Read, 1984; Read and
Cressie, 1988) family of minimum divergence distance measures. The Cressie–Read power-divergence (CR) statistic (Cressie
and Read, 1984; Read and Cressie, 1988; Baggerly, 1998)

Ið p; q; kÞ ¼ 2
kð1þ kÞ

pi
pi
qi

! "k

$1

" #

;

provides a family of distance or discrepancy measure between p (i.e., the conditional probabilities in our problem) and a set of
reference weights q. When λ=0, and the reference distribution, qi, is uniform, the Cressie-Read distancemeasure yields the Shannon/
Jaynes entropy criterion, $

P
i pilnðpiÞ. For a more complete discussion of the CR statistic and corresponding family of criterion

functions, see Mittelhammer et al. (2000). For a discussion of the entropy principle, see Golan et al. (1996).
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subject to the column–sum condition,

n:k ¼
XJ

j¼1

njpjk; ð6Þ

and the additivity condition,

XK

k¼1

pjk ¼ 1 8j: ð7Þ

In this way, the problem is stated as a constrained minimization problem that minimizes the distance
between the estimated pi and qi, a uniform reference distribution. Depending on the external knowledge
base, other fixed or random qi may serve as the reference distribution. Note that the statement of the pure
inverse problem, in an extremum context, involves three components: the distance measure (5), the data
constraint (2) in the form of (6), and the additivity condition (7).

The Lagrangian function for the constrained minimization problem expressed in (5), (6) and (7) is

Lð p; q; k; a;gÞ ¼
XJ

j¼1

XK

k¼1

pjk lnð pjkÞ $
XK

k¼1

ak nk $
XJ

j¼1

nj:pjk

 !

$
XJ

j¼1

gj
XK

k¼1

pjk $ 1

 !

; ð8Þ

where α is the Lagrange multiplier for constraint (6) and γ is the Lagrange multiplier for constraint (7).
The solution of the first-order condition leads to the following expression for the conditional
probabilities:

̂pjk ¼
expð ̂aknjÞ
PK

k¼1
expð ̂aknjÞ

: ð9Þ

In general, this solution does not have a closed-form expression and the optimal values of the unknown
parameters must be numerically determined.

3. Applications

We use two examples to illustrate the use of the maximum entropy approach for information recovery.
The first is an application from economics and relates to consumer behavior in the purchase of bacon and
eggs. The second is an application from political science and concerns voter behavior and candidate
choice.

3.1. Bacon and eggs

In a recent paper, Danaher and Hardie (2005) consider a bivariate bacon and eggs problem. Their
data are shown in Table 1. Using the data in the marginals of Table 1, the entropy criterion, and the
solution basis developed in Section 2.2, our results are presented in Table 2. The conditional
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probabilities are listed in parentheses. The observable aggregate data are reflected in row and column
sums, and the unknown or unobservable data have the respective conditional probabilities, pjk in the
interior cells of the table (see Good, 1963; Gokhale and Kullback, 1978). There is a fairly close fit
between the actual data (Table 1) and the information theoretic estimates (Table 2). The fit tends to
decline with the smaller values that are prone to occur at the edges of the table but, in general, the
recovery pattern is impressive. The correlation between the observed and the estimated values for the
first three rows is 0.999, 0.970, and 0.861, respectively.

3.2. Voting rights

Another example can be found in the analysis of election data (see Cho and Judge, 2007). In the
U.S., we are subject to the secret ballot, and so while we may know how many votes a particular

Table 2
Empirical likelihood estimates

Bacon Eggs Total

0 1 2 3 4

0 262.34 122.48 40.48 4.65 0.01 429.96
(0.6101) (0.2849) (0.0941) (0.0108) (0.0000)

1 27.36 23.50 18.83 12.21 4.07 85.97
(0.3183) (0.2734) (0.2190) (0.1420) (0.0473)

2 5.38 5.16 4.87 4.33 3.23 22.97
(0.2342) (0.2246) (0.2120) (0.1885) (0.1406)

3 1.25 1.24 1.22 1.18 1.09 5.98
(0.2090) (0.2074) (0.2040) (0.1973) (0.1823)

4 0.61 0.61 0.60 0.59 0.57 2.98
(0.2047) (0.2047) (0.2013) (0.1980) (0.1913)

Total 296.94 152.99 66.00 22.96 8.97

Table 1
Observed bivariate distribution of the number of times bacon and eggs were purchased on four consecutive shopping trips

Bacon Eggs Total

0 1 2 3 4

0 254 115 42 13 6 430
(0.5907) (0.2674) (0.0977) (0.0302) (0.0140)

1 34 29 16 6 1 86
(0.3953) (0.3372) (0.1860) (0.0698) (0.0116)

2 8 8 3 3 1 23
(0.3478) (0.3478) (0.1304) (0.1304) (0.0435)

3 0 0 4 1 1 6
(0.0000) (0.0000) (0.6667) (0.1667) (0.1667)

4 1 1 1 0 0 3
(0.3333) (0.3333) (0.3333) (0.0000) (0.0000)

Total 297 153 66 23 9 548
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candidate received in a particular precinct, we do not know how particular individuals or groups of
individuals voted. We can obtain, for example, racial demographic information for a precinct but not
the vote preferences of the racial groups. Accordingly, we know what proportion of the vote each
candidate received and the racial proportions of the electorate, but we would like to determine how
the different racial groups voted. The results of an analysis on racial vote preferences are often
pivotal in a judge's decision regarding whether district lines must be redrawn.

Consider the election data shown in Table 3. Because of the secret ballot, we know the marginal
row and column totals, but not the values in the interior cells, pij. All of the known information is
thus displayed in the margins. In this particular election, there were four candidates. The estimated
conditional probabilities are displayed in the interior cells of Table 3. In this case, as in virtually all
cases found in practice, we do not know if our estimated conditional probabilities match the empirical
reality, since the empirical outcomes are masked by the secret ballot or data that are partial and
incomplete. However, the information recovered via the information theoretic approach provides one
valuable basis for decision making and choice.

4. Summary

The information theoretic approach provides an appealing basis for information recovery in the
context of pure ill-posed inverse problems. If the unknowns of the problem are unobservable and
only marginal or aggregate data totals are available, information theoretic methods provide a way
to recover information from indirect observations via a solution to an ill-posed inverse problem.
The information theoretic approach avoids a fully parametric/structural approach and proceeds
instead with a minimum number of assumptions. This is in accord with the logical principle of
Occam's razor. In ill-posed inverse or under-identified problems, even after we limit the solution
set to estimates consistent with data constraints such as (6) and (7), there are an infinite number
of remaining possible solutions. Using the MaxEnt criterion, the solution chosen from among all
of the possible solutions is the one that could happen in the most likely or greatest number of
ways.

If in cases such as those involving economic behavior where only macro data is available, MaxEnt
conditional probabilities provide null hypotheses that may be checked by way of an experiment or
survey. Information theoretic methods are easy to implement and computationally simple. If one has
theoretical information concerning the conditional probabilities such as distributional symmetry or
information from a previous sample, it is simple to incorporate this information in the reference
distribution and to modify the model accordingly.

Table 3
Precinct-level results from information theoretic model

Republican Democrat Independent 1 Independent 2 Abstention Total

White 0.7580 0.1250 0.0008 0.0000 0.1161 1158
Black 0.3539 0.2505 0.0959 0.0526 0.2470 222
Other 0.2220 0.2116 0.1850 0.1702 0.2112 31

963 207 28 17 196 1411

Louisiana's 5th CD.
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