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1. Problem Description
Randomized experiments have been used by a diverse
swath of researchers to isolate treatment effects and estab-
lish causal relationships. Such experiments have informed
our understanding of medicine (e.g., the effect of drugs,
the causes of cancer, the benefit of vitamins), and have
been instrumental in the implementation of public pol-
icy (e.g., shedding insight on the effect of racial cam-
paign appeals, testing the effect of get-out-the-vote appeals,
determining the impact of new voting technologies). The
randomized experimental framework is best suited for
exploring causal inferences. In an experiment, a study pop-
ulation is chosen (ideally) at random, or otherwise, by a
careful selection of a convenient sample. Another random
process determines whether or not each unit will receive
a treatment. Because randomization ensures that the treat-
ment and control units are identical in distribution, save that
the treatment units have received a treatment, the treatment
effect can then be defined as the difference in response
(measurable outcome) between the units in the treatment
group and those in the control group. In addition to offering

tools for measuring estimation accuracy (e.g., calculating
p-values, confidence intervals), randomization is powerful
because it allows the effect of treatment to be isolated from
that of confounding factors.

There are numerous situations where conducting a ran-
domized experiment is impractical or not even possible
(due to ethical dilemmas). For example, to determine
whether smoking causes lung cancer, it would not be possi-
ble to randomly select people to smoke. Similarly, although
it would be beneficial to understand the perils of radiation
exposure, randomly choosing people and exposing them
to high levels of radiation is unethical. Although experi-
ments cannot be conducted for these pressing and important
research queries, one can often collect observational data.
So, although we would not expose people to situations that
might put their health in peril, because these situations do
occur, we can observe people who choose to smoke or find
people who have been inadvertently exposed to radiation.
This type of data is called observational data because it is
observed (rather than created via experiments).

Observational data are both more prevalent than exper-
imental data and available for a larger set of important
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queries. Indeed, there are already many instances of
research attempting to make causal inferences using obser-
vational data. In the health field, for example, studies
have examined the impact of generic substitution of pre-
sumptively chemically equivalent drugs (Rubin 1991), the
consequences of in utero exposure to phenobarbital on
intelligence deficits (Reinisch et al. 1995), and the effect
of maternal smoking on birthweight (da Veiga and Wilder
2008). Public policy applications of causal analysis have
included the impact of different voting technologies for
counting votes (Herron and Wand 2007), the varying role
of information on voters in mature versus new democra-
cies (Sekhon 2004), and the effect of electoral rules on
the presence of the elderly in national legislatures (Terrie
2008). At the same time, there is no consensus on how best
to proceed if one wishes to make causal inferences with
observational data.

The critical difference between experiments and obser-
vational studies is that in experiments, because units are
randomly assigned to a treatment, the distributions of their
covariates (attributes) in the treatment and control groups
are identical, isolating the effect of treatment and permitting
its determination in expectation. Although various mecha-
nisms have been proposed for random assignment in the
statistical literature to handle such issues (Morris 1985),
working with observational data sets requires a different set
of tools.

It is well recognized that confounding effects in a data
set may exist due to both observed (those reflected in the
data set) and unobserved covariates. Dealing with unob-
servable covariates is a fundamental challenge for causal
inference and requires additional information to supplement
the available data, whereas the effects of observed covari-
ates can be isolated by data postprocessing, which has
received significant interest from practitioners as reported
above. A large body of literature has been sparked by the
works of Rubin and Rosenbaum, the first to present def-
initions, assumptions, and discussions to arrive at a tech-
nically sound formulation of the causal inference problem
with observational data (see individual references in the
text below). This paper makes a contribution to this already
rich literature, offering an alternative approach to causal
analysis.

In order to analyze observational data, where treatment
assignment has already been made (a priori nonrandomly),
one must postprocess the data with respect to the observed
covariates so as to remove confounding effects by creat-
ing treatment and control groups with statistically indis-
tinguishable distributions of their covariates. How to best
postprocess observational data and assess the success of
this venture is an open question.

To transition from a randomized experimental setting to
an observational setting, the nuances and similarities of
each must be examined. For unit u, let Y 1

u (Y 0
u ) denote

a treated (untreated) response; Tu, a treatment indica-
tor (1 means treated, 0 means not treated); and Xu =

8X1u1X2u1 0 0 0 1XKu9, a vector of values for K covariates.

In both experimental and observational settings, a pop-
ulation of units is under consideration. For a particular
unit u, the causal effect of the treatment (relative to the
control) is defined as the difference in response that results
from receiving and not receiving the treatment, Y 1

u − Y 0
u .

The fundamental problem of causal inference is that it
is impossible to observe both values Y 1

u and Y 0
u on the

same unit u (Holland 1986) (e.g., a person either smokes
or does not smoke). The outcome of an observation of a
unit is termed the observed response, TuY

1
u + 41 − Tu5Y

0
u .

The Rubin causal model (Rubin 1974, 1978) reconceptual-
izes this causal inference framework so that the response
under either treatment or control, but not both, needs to be
observed for each unit. That is, one statistical solution to
the fundamental problem of causal inference is to shift to
an examination of an average causal effect over all units
in the population, E4Y 1

u − Y 0
u 5 = E4Y 1

u 5 − E4Y 0
u 5, where

E4Y 1
u 5 is computed from the treatment group and E4Y 0

u 5 is
computed from the control group.

An important consideration is how one determines which
units will inform the values of Y 1

u and Y 0
u . In an obser-

vational study, one observes some pool of units who
have received a treatment, giving E4Y 1

u �T = 15, and some
pool of units who have not received a treatment, giv-
ing E4Y 0

u �T = 05. In general, E4Y 1
u 5 6= E4Y 1

u �T = 15 and
E4Y 0

u 5 6= E4Y 0
u �T = 05. Moreover, the average treatment

effect (ATE), E4Y 1
u − Y 0

u 5, is not the same as the aver-
age treatment effect for the treated (ATT), E4Y 1

u �T = 15−

E4Y 0
u �T = 15. By design, ATE and ATT are interchange-

able if the independence assumption holds. That is, if expo-
sure to treatment (T = 1) or control (T = 0) is statisti-
cally independent of response and covariate values, then
the units have been properly randomized into treatment and
control pools, rendering ATE and ATT to be the same.
This situation is not typically the case in observational
studies because units are not randomly placed into treat-
ment and control pools. Instead, ATT = E4Y 1

u �T = 15 −

E4Y 0
u �T = 15 = E4Y 1

u �T = 15−E4Y 0
u �T = 05+B, where

selection bias is present, defined as B ≡ E4Y 0
u �T = 05 −

E4Y 0
u �T = 15.

One approach for estimating treatment effects outside the
experimental realm relies on multivariate statistical tech-
niques, which fall under the broad rubric of matching meth-
ods (Rubin 2006). The core of these methods is to employ
tools to match units based on their covariate similarity. This
results in each treatment unit being matched with a control
unit. If the matching venture is successful, then treatment
and control groups are obtained such that the two groups
are similar in their covariates, differing only on the treat-
ment indicator value, thereby reducing the bias in the esti-
mation of treatment effects.

Although this set of techniques has been widely used,
there remains a lack of consensus on how best to achieve
matching or how to assess the success of a matching
process. However, a generally accepted principle is that
balance on the covariates leads to minimal bias in the
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estimated treatment effect (Rosenbaum and Rubin 1985).
Here, balance has been loosely understood as similarity
between distributions of covariates in the treatment and
control groups. Therefore, whereas most researchers agree
that a reasonable goal of matching procedures is to obtain
balance, there remains disagreement on how to measure
balance, leading to a difficulty in assessing how a particular
matched group compares to other possible matched groups
that achieve varying levels of balance. The resulting lack of
guidance is a critical omission, because different matched
sets can lead to conflicting conclusions.

Interestingly, few of the existing matching methods
directly attempt to obtain optimal covariate balance despite
claiming that covariate balance is the measure by which
to judge the success of the matching procedure. Instead,
researchers perform some type of matching (e.g., propen-
sity score matching, Mahalanobis matching), check to see
if the groups appear to be roughly similar, and, if unsat-
isfied, modify parameters of the matching procedure (e.g.,
distance metric weights or regression model specifica-
tion) and repeat (see Figure 1). The point at which to
end this iterative procedure is at the discretion of the
researcher. By design, researchers are unable to objec-
tively assess the quality of their final matched groups
because the benchmark, the matched groups with optimal
balance, is unknown. Recognizing this issue, recent work
of Diamond and Sekhon (2010) attempts to streamline the
process of “match—check balance—adjust and repeat as
needed” by using a genetic algorithm to adjust the param-
eters and weights used in the matching algorithm in order
to obtain matched samples with the best possible balance
measure.

Other researchers have also begun to move towards the
idea of direct optimization of balance within a matched
samples framework. In particular, Rosenbaum et al. (2007)
introduce the notion of fine balance, which “refers to
exactly balancing a nominal variable, often one with many
categories, without trying to match individuals on this vari-
able” (Rosenbaum et al. 2007, p. 75). This relaxation from
exact individual matches on a covariate to equal proportions
of individuals in the treatment and control groups for each
value of the covariate is central to the approach proposed in
this paper. Whereas Rosenbaum et al. (2007) consider fine
balance for one (nominal) covariate, with matches required
on the rest, this paper extends this concept to all covariates.

Another recent effort introduced entropy balancing
(Hainmueller 2012), which uses a maximum entropy

Figure 1. Matching methods logic.

Choose/adjust
regression/matching
model parameters

Run a matching
algorithm to find

a solution

Are the covariates in
treatment and control

groups balanced?

Yes

No
Repeat

Report a treatment
effect estimate,
bootstrap for

variance

reweighting scheme to adjust weights for each of the con-
trol individuals in order to meet user-specified balance con-
straints placed on the moments of the covariate distributions.
For more background on the idea of weighting observations
in a data set, see Hellerstein and Imbens (1999).

Matching treatment and control units on an individual
level is one method to achieve covariate balance; however
it is not a guarantee. We argue that although the focus
in the causal inference literature has been on matching,
the matching itself of treatment units to control units is
not necessary. Notable publications that support the idea
of conducting causal analysis on an aggregate, group level
include Abadie and Gardeazabal (2003) and Abadie et al.
(2010). Matching is not the only way to reduce selection
bias, and arguably not even the best way, because one is
not interested in unit matches per se, but in creating control
and treatment groups that are statistically indistinguishable
in the covariates (i.e., featuring covariate balance). Such an
observation suggests that a shift in direction is possible in
how treatment and control groups can be created.

To realize such a shift, §2 motivates and presents the
Balance Optimization Subset Selection (BOSS) approach
to the problem of causal inference based on observational
data. Section 3 reports computational results from one
BOSS algorithm for the estimation of treatment effect in
a simulated problem. Section 4 offers concluding remarks,
discusses the potential of the BOSS approach, raises
some theoretical and practical challenges, and outlines sev-
eral topics for future investigation within the operations
research community.

Note that the main contribution of this paper is con-
ceptual and theoretical. The goal of §2 is to present the
problem of causal inference in a new light, opening up a
field where optimization tools developed within the opera-
tions research community can make an impact. By motivat-
ing and formalizing an alternative approach to a problem
of great importance to multiple domains of modern sci-
ence, this paper is intended as a seed for more applied,
computational-oriented literature. Section 3 is not meant to
be comprehensive; instead, it positions itself to illustrate
that the proposed theory can shift the problem at hand into
the computational realm. It is not intended to deliver com-
prehensive numerical achievements, but rather supports the
call for more intense, goal-driven computational research
of BOSS. The electronic companion to this paper is avail-
able as supplemental material at http://dx.doi.org/10.1287/
opre.1120.1118.
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2. BOSS Approach
The presented approach offers an alternative perspective
on causal inference using observational data. It exploits
the idea that covariate balance leads to minimized bias in
the estimated treatment effect by directly optimizing a bal-
ance measure without requiring matched samples. As noted
in §1, although the success of matching methods is assessed
by the degree of balance achieved, very few of the cur-
rent matching methods directly optimize balance, resorting
to different types of optimization problems (e.g., optimal
parameter estimation for regression models, optimal assign-
ment for unit matching with calipers). Traditional matching
methods simply report balance statistics without a guide to
assessing whether the reported balance could be improved
upon, is good, or even sufficient. There may be no standard
metric to assess the degree of balance achieved; however,
a discussion of balance is always presented and perceived
as a final verdict, validating a conducted analysis. This
simple observation highlights that the problem at hand is
a balance optimization problem, not a matching problem.
Matching is one method to obtain balance, but it unnec-
essarily restricts the solution space and lacks a measure
of balance optimality. Indeed, the end goal is balance, not
matching, and hence, optimizing on balance measures is
reasonable and preferred.

The BOSS approach to causal inference with observa-
tional data reformulates the problem as one of balance
optimization (Cho et al. 2011). In so doing, the prob-
lem is transformed from matching individual units to a
subset selection problem, and exploits operations research
methodologies (and in particular, discrete optimization) that
are ideally suited to model and address the balance opti-
mization problem. In essence, BOSS inverts the direction of
the solution methodology and redefines the problem struc-
ture to directly obtain the goal of covariate balance (see
Figure 2). Note that the results of this subset selection
approach come at a cost of losing qualitative information of
individual matches, which may be useful in some practical
situations; however, group-based average quantities can be
estimated more precisely.

2.1. The Value of Covariate Balance

To motivate the subset selection problem and explain bal-
ance on covariates and why it is required for unbiased
estimation of the treatment effect, a formal problem formu-
lation is presented.

Figure 2. BOSS logic.

Choose balance measure

distribution fit)

Run BOSS algorithm to
find multiple solutions

minimizing the balance
measure

Report the balance and
compute the mean and
variance of treatment

effect

(a statistic for testing

Let SN ≡ 8ui9
N
i=1 denote a set of N observed units.

Define the average treated response Ȳ 1
SN

= 41/N5
∑

u∈SN
Y 1
u

and the average untreated response Ȳ 0
SN

= 41/N5
∑

u∈SN
Y 0
u .

Given a set of units that have received treatment, treatment
pool T; a set of units that have not received treatment, con-
trol pool C; and a set of K covariates, a pair of subsets
for comparison is identified: treatment group ST

N ⊂T and
control group SC

N ⊂C. To understand the value of covari-
ate balance in causal inference, the following assumption
is required (Rosenbaum and Rubin 1983).

Assumption 1 (Strong Ignorability for Groups). Con-
sider a population of all groups of size N , where SN ≡

8ui9
N
i=1 denotes any such group of N observed units, which

are either entirely treated (i.e., 8Tu = 19u∈SN
) or untreated

(i.e., 8Tu = 09u∈SN
). For any set of covariates 8Xu9u∈SN

,
assume

4Ȳ 1
SN

1 Ȳ 0
SN

5q 8Tu9u∈SN
� 8Xu9u∈SN

1 (1)

and

0 <P48Tu = 19u∈SN
� 8Xu9u∈SN

5 < 10 (2)

Expression (1) means that for any group of units, its
average responses are independent of treatment, given the
units’ covariate values. The symbol “q” signifies condi-
tional independence (Dawid 1979). This implies that the
K observed covariates include all the covariates, dependent
on the treatment assignment Tu, that have causal effects on
the responses Y 1

u and Y 0
u , for every unit u. Additionally,

by expression (2), each group with a given set of its units’
covariate values is assumed to have a positive probability
of appearing in either the treatment pool or control pool.
These assumptions are made throughout the statistical lit-
erature, albeit for individual units (Rosenbaum and Rubin
1983). Assumption 1 is equivalent to the original assump-
tion of Rosenbaum and Rubin (1983) when N = 1. The
following proposition captures the objective of any method
of postprocessing observational data for causal inference.

Proposition 1. Assume that Assumption 1 holds. From the
treatment pool, randomly select treatment group ST

N . Next,
randomly select groups of size N from the control pool,
until control group SC

N is identified such that 8Xu9u∈SC
N

=

8Xu9u∈ST
N

. Then,

E4Ȳ 1
ST

N
− Ȳ 0

SC
N
5= ATT0 (3)

Proof. The described mechanism for the selection of ST
N ,

and subsequently, SC
N ensures that

E4Ȳ 1
ST

N
5=Ex � 8Tu=19u∈SN

[

E4Ȳ 1
SN

� 8Tu = 19u∈SN

∩ 8Xu9u∈SN
= x5 � 8Tu = 19u∈SN

]
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E4Ȳ 0
SC

N
5=Ex � 8Tu=19u∈SN

[

E4Ȳ 0
SN

� 8Tu = 09u∈SN

∩ 8Xu9u∈SN
= x5 � 8Tu = 19u∈SN

]

0

By definition,

ATT =E4Ȳ 1
SN

− Ȳ 0
SN

� 8Tu = 19u∈SN
50

By conditioning,

ATT =Ex � 8Tu=19u∈SN

[

E4Ȳ 1
SN

− Ȳ 0
SN

� 8Tu = 19u∈SN

∩ 8Xu9u∈SN
= x5

]

1

and under Assumption 1,

ATT =Ex � 8Tu=19u∈SN

[

E4Ȳ 1
SN

� 8Tu = 19u∈SN

∩ 8Xu9u∈SN
= x5 � 8Tu = 19u∈SN

]

−Ex � 8Tu=19u∈SN

[

E4Ȳ 0
SN

� 8Tu = 09u∈SN

∩ 8Xu9u∈SN
= x5 � 8Tu = 19u∈SN

]

1

which completes the proof. �
From Proposition 1, the key to causal inference research

is the ability to identify control groups with the joint distri-
bution of covariates identical to that of a treatment group.
This translates into the property that the probability that
(as a group) units in SC

N could be treated is the same as
the probability that units in ST

N are treated. Note that for
individual units (i.e., for N = 1), this probability is known
as the propensity score. If the distributions of covariates in
groups ST

N and SC
N are the same, then such groups are said

to be optimally balanced on the set of the K covariates,
rendering P48Tu = 19u∈SC

N
5= P48Tu = 19u∈ST

N
5.

The result of Proposition 1 is for groups of units, not
individual units. If groups ST

N and SC
N have one unit each

(N = 1), and these units are perfectly matched (Xu∈SC
N

=

Xu∈ST
N

), then (3) holds. Similarly, in propensity-score
based methods (Rosenbaum and Rubin 1983), regression is
used to match units with the same estimated probabilities
of being treated, again to have P48Tu = 19u∈SC

N
5 =

P48Tu = 19u∈ST
N
5 for groups of such units. In all these meth-

ods, however, a value assessing covariate balance is judged
after the data have been postprocessed, with covariate bal-
ance not serving as a direct guide for optimal group selec-
tion. Although more rigorously designed propensity score
models might mitigate this problem to some degree, such
potential advances will require deeper statistical design
research in the future.

2.2. Modeling and Optimization for
Causal Inference

BOSS reframes the causal inference problem as a subset
selection problem. The goal is to randomly generate ST,
a subset of T, and find SC, a subset of C, such that a mea-
sure of balance, M4ST1SC5, is optimized. This discrete
optimization problem can be addressed using operations

research algorithms and heuristics. This formulation, more-
over, lays the foundation for the development of a new
analytical model that exploits the power of ever-increasing
computational resources to assess, inform, and improve
data analytic techniques.

The BOSS conceptualization is flexible and falls within a
general discrete optimization framework. Various measures
of balance can be adapted into BOSS. This paper provides a
detailed statement of one instance of a balance optimization
problem, using a balance measure for a binning model. An
intuitive way of comparing distributions is a visual study of
histograms based on their probability mass functions (pmf)
(Imai 2005). Using goodness-of-fit test statistics based on
histograms is a more precise and rigorous way of quanti-
fying the difference between covariate distributions for ST

and SC.
More formally, for each covariate k = 1121 0 0 0 1K,

its range 6Lk1Uk7, with Lk = minu∈T∪CXku and Uk =

maxu∈T∪CXku, can be broken up by thresholds Lk = tk0 <
tk1 < tk2 < · · · < tkR4k5 = Uk. The total number of thresholds
R4k5 used for covariate k = 1121 0 0 0 1K is typically the
number of categories for discrete (categorical) variables and
some positive integer for continuous variables. This is sim-
ilar to the coarsening procedure proposed by Iacus et al.
(2012) for coarsened exact matching.

Let covariate cluster D denote a subset of the set of
covariates D ⊆ 81121 0 0 0 1K9. For any covariate cluster D =

8k11 k21 0 0 0 1 km9 consisting of m covariates, with 1 ¶ k1 <
k2 < · · · < km ¶ K, define a set of bins BD as the set of
intervals of the form 6t

k1
r−11 t

k1
r 7× 6t

k2
r−11 t

k2
r 7×· · ·× 6t

km
r−11 t

km
r 7

that spans the entire joint range of values of the covari-
ates in D. Assuming a given fixed ordering of the elements
in BD, the individual bins are indexed 8BD

1 1B
D
2 1 0 0 0 1B

D
Rm
9,

with Rm ≡
∏m

j=1 R4kj5. These bins are used to quantify
the difference between the joint distributions of values of
covariates in D for groups ST and SC.

Let N4S1BD
b 5 denote the number of units in group S

with the values of covariates in D contained in bin BD
b , or

the number of units falling into bin b. The objective of the
BOSS optimization problem is to minimize the difference
between N4SC1BD

b 5 and N4ST1BD
b 5 over all of the bins

for all covariate clusters of interest, where any objective
function that simultaneously minimizes these differences
can be used to evaluate the distribution fit. The Balance
Optimization Subset Selection with Bins (BOSS-B) problem
is now formally stated:

Given: K covariates; a fixed integer N ; set ST, ran-
domly selected from set T of units represented by vec-
tors 8X1u1X2u1 0 0 0 1XKu9, u ∈ T, with �T� = N ; set C of
units represented by vectors 8X1u1X2u1 0 0 0 1XKu9, u ∈ C,
with �C�>N ; a set of covariate clusters D; bins BD for
each D ∈D.

Objective: find subset SC ⊂C of size N , such that

∑

D∈D

∑

b=1121 0001 �BD �

4N4SC1BD
b 5−N4ST1BD

b 55
2

max4N4ST1BD
b 5115

(4)

is minimized.
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BOSS-B is a balance optimization problem. It exempli-
fies how the BOSS approach can be used for causal infer-
ence, with one measure of balance M4ST1SC5 expressed
by (4). In BOSS-B, assignments of treatment and control
units into groups are determined such that a finite number
of preselected marginal and/or joint distributions of covari-
ates are optimally balanced, thereby isolating the effect of
treatment from marginal and/or joint effects of these covari-
ates and reducing bias in the estimated expected differ-
ence between the treatment and the control responses. The
objective function (4) is similar in form to the chi-square
test statistic, which provides additional meaning to the for-
mulation. As the distributions get simultaneously balanced,
which occurs with an increasing number of bins, the more
accurate estimates of the treatment effect can be obtained.
However, as more bins are used, resulting in the histogram
resolution increasing, optimizing (4) becomes more diffi-
cult, because fewer and fewer control groups can be iden-
tified as similar to the treatment group. Additionally, the
number of required bins for a covariate cluster grows expo-
nentially with the number of covariates in that cluster. For-
tunately, this exponential growth is mitigated by the fact
that the number of occupied bins for any covariate cluster
is at most �T� + �C�.

The decision version of BOSS-B is NP-complete through
a polynomial many-one reduction from the “Exact Cover
by 3-Sets” problem, which is known to be NP-complete
(Garey and Johnson 1979), and hence, the optimization ver-
sion of BOSS-B is NP-hard (see the online supplement for
a formal proof). However, for small-size problem instances,
algorithms like simulated annealing are sufficient to deliver
good results in reasonable computing time.

Note also that many algorithms solving an instance of
BOSS often encounter a large number of optimal or nearly
optimal solutions, depending on the binning scheme that is
used. As one might intuitively guess, there exist multiple
subsets of the treatment and control pools (i.e., solutions
to a balance optimization problem) that yield optimal or
nearly optimal balance. Swapping out a single unit for
another often produces only small changes in the bal-
ance function. Often even fairly large differences in subsets
result in similar balance values. Accordingly, in addition to
finding the optimal balance, it is helpful to also examine the
subsets that produce similarly balanced covariates and esti-
mate the spread of the distribution of the treatment effect.

2.3. Theoretical Aspects of BOSS-B

This section discusses how solutions to a balance optimiza-
tion problem can be used to obtain estimates for ATT, and
how the estimation bias is reduced as a function of covari-
ate clusters in BOSS-B (more specifically, the number of
bins) and the quality of solutions achieved for a given
measure of balance. Without loss of generality, assume
that ST = T. In most real-world observational studies,
treated units are rare, and hence, all available such units are
included in the treatment group. Therefore, a solution to

BOSS-B is a control group that is selected out of a larger
control pool of units. Also, for a given instance of BOSS-B,
refer to solutions with zero objective function in (4) as per-
fectly optimized. A perfectly balanced solution (i.e., one
that has exactly the same joint distribution of covariates
in a control group as in the treatment group) is typically
perfectly optimized in any measure of balance, though the
reverse is not necessarily true. For example, balance on all
of the marginal distributions does not generally imply bal-
ance on the joint distribution.

Three sources of error are inherent with the application
of BOSS-B: error due to noise in the response functions for
Y 1 and Y 0; error due to bin size or the number of bins used;
error due to nonzero objective function (when a perfectly
optimized solution is not found or does not exist).

The first source of error is present in all problems, result-
ing from the uncertainty inherent in all processes in nature,
and hence cannot be eliminated. However, given Assump-
tion 1, the noise in the response has zero mean, and aver-
ages to zero for sufficiently large treatment and control
groups. The other two sources of error are not so well
behaved. However, under certain assumptions, the impact
of these errors can be limited. Ideally, one would like to
obtain SC

N ⊂ C that feature perfect balance on the joint
distribution of all covariates, D = 81121 0 0 0 1K9. Note that
this condition is equivalent to perfect individual matching,
which, if possible, one could find in polynomial time (in the
sizes of T and C, and N ) using an assignment algorithm.
In practice, however, this is rarely achievable for N large.
Therefore, suboptimal solutions may need to be consid-
ered, which is why working with observational data is a
challenge. Fortunately, perfect balance on the joint distri-
bution of all covariates may not be necessary for accurate
inference. This suggests that most real-world causal infer-
ence problems can be solved using groups that offer good,
albeit not perfect, balance, or using groups that are per-
fectly balanced on a more limited set of marginal and/or
joint distributions of covariates, for making a correct infer-
ence. Theorem 1 illustrates the latter point.

Theorem 1. Suppose that for any unit u, response Y 1405
u can

be expressed as a sum of functions of individual covariates,

Y 1405
u =

∑

k=1121 0001K

h
1405
k 4Xku5+ �14051 (5)

where random variable �1405 represents noise, with E4�14055
= 0. Suppose also that the function h

1405
k 4Xku5 is locally Lip-

schitz continuous such that for each k = 1, 21 0 0 0 1K,

�h
1405
k 4x15−h

1405
k 4x25�¶ L

1405
k �x1 − x2�1 (6)

where L
1405
k is a positive Lipschitz constant for the func-

tion h
1405
k , k = 1121 0 0 0 1K. Consider an instance of BOSS-B

with ST
N = T, N = �T�, and D = 88191 8291 0 0 0 1 8K99. The

bias that arises in the estimation of ATT using an estimator
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Ȳ 1
ST

N

− Ȳ 0
SC

N

, obtained from a perfectly optimized solution

SC
N ⊂ C, then converges to zero as the number of bins in

the sets BD, D ∈D, approaches infinity telescopically (i.e.,
the number of bins is increased by uniform sequential sub-
partitioning).

Proof. Consider the control group SC415

N , a perfectly opti-
mized solution to an instance of BOSS-B with fixed sets
of bins BD, D ∈ D. Also, consider control group SC425

N , a
perfectly optimized solution to the same instance of the
BOSS-B problem, where bin BD

r ∈ BD for some D =

8k9 ∈D, k ∈ 81121 0 0 0 1K9, and r ∈ 81121 0 0 0 1R4k59 is par-
titioned to form bins BD

r1
and BD

r2
such that BD

r1
∩ BD

r2
= �

and BD
r1

∪BD
r2

= BD
r . Define sets Ir = 8i2 i ∈ST

N , Xki ∈ BD
r 9,

J 415
r = 8j: j ∈SC415

N , Xkj ∈ BD
r 9, and J 425

r = 8j: j ∈ SC425

N ,
Xkj ∈ BD

r 9. Let ã1, ã2, and ã denote the volumes of bins
BD
r1

, BD
r2

, and BD
r , respectively. Also, let Z denote the num-

ber of control units in SC415

N falling into bin BD
r , and let

Z1, Z2 denote the number of control units in SC425

N falling
into bins BD

r1
and BD

r2
, respectively. By design, ã=ã1 +ã2

and Z = Z1 + Z2, and �J 425
r1

� = Z1, �J 425
r2

� = Z2 and �Ir � =

�J 415
r � =Z.
Proposition 1 describes an approach to select treatment

and control groups to ensure that Ȳ 1
ST

N

− Ȳ 0
SC

N

is an unbiased
estimator of ATT. Using this notation, observe that 41/�Ir �5 ·
∑

i∈Ir
Y 1
i is an unbiased estimator of E4Ȳ 1

SN
� 8Ti = 19i∈Ir 5,

by (5). However, in general, 41/�J 415
r �5

∑

i∈J
415
r
Y 0
i is not an

unbiased estimator of E4Ȳ 0
SN

� 8Ti = 19i∈Ir 5, because the
exact values in covariate k for the control units falling into
a single bin may be different from the values for treatment
units in the same bin. As such, an imbalance is created
within bin BD

r , because the treatment and control values are
not identically distributed within the bin. This imbalance
results in a contribution B4BD

r 5 to the bias in the estimation
of E4Ȳ 0

N � 8Ti = 19i∈Ir 5 using SC415

N ,

B4BD
r 5≡

∣

∣

∣

∣

∣

1

�J
415
r �

∑

j∈J
415
r

E4Y 0
j 5−

1
�Ir �

∑

i∈Ir

E4Y 0
i 5

∣

∣

∣

∣

∣

0

From (5) and (6),

B4BD
r 5=

1
Z
E

(

∑

j∈J
415
r

h0
k4Xkj5−

∑

i∈Ir

h0
k4Xki5

)

¶ 1
Z

∑

i∈Ir 1 j∈J
415
r

�h0
k4Xkj5−h0

k4Xki5�¶ L0
kã≡U 4151

where U 415 is an upper bound on the bias B4BD
r 5. Similarly,

by (5), an imbalance within bins BD
r1

and BD
r2

results in
contributions B4BD

r1
5 and B4BD

r2
5, respectively, to the bias

in the estimation of E4Ȳ 0
N � 8Ti = 19i∈Ir 5 using SC425

N , with

B4BD
r1
5+B4BD

r2
5¶ 1

Z

(

∑

i∈Ir1 1 j∈J
425
r1

�h0
k4Xkj5−h0

k4Xki5�

+
∑

i∈Ir2 1 j∈J
425
r2

�h0
k4Xkj5−h0

k4Xki5�

)

0

Therefore, by (6),

B4BD
r1
5+B4BD

r2
5¶ L0

k

Z1ã1 +Z2ã2

Z1 +Z2

≡U 4251

which is an upper bound on the bias B4BD
r1
5 + B4BD

r2
5.

Observe that for Z1 > 0, Z2 > 0, ã1 > 0 and ã2 > 0, Z1ã1 +

Z2ã2 < Zã, and hence, U 425 < U 415. Moreover, if bin BD
r

is subpartitioned uniformly, which implies ã1 = ã2, then
U 425 =U 415/2.

Generalizing this argument to a telescopically increasing
number of subpartitioned bins, let U denote the bias in the
estimation of E4Ȳ 0

SN
� 8Tu = 19u∈SN

5 when no optimization
is conducted and SC

N ≡C. Observe that because U is finite,
then for a perfectly optimized solution SC�B�

N to the instance
of BOSS-B with bins B =

⋃

D∈DB
D, the total bias can be

bounded, and converges to zero as the number of bins, �B�,
approaches infinity,

B≡

∣

∣

∣

∣

∣

1
N

∑

u∈SC
N

Y 0
u −E4Ȳ 0

N � 8Tu = 19u∈SN
5

∣

∣

∣

∣

∣

¶
∑

b∈B

B4b5¶ U

�B�
→ 00 �

Theorem 1 assumes that the response function (5) is sepa-
rable, meaning that it can be represented as a sum of func-
tions of individual covariates. Although such an assumption
may appear restrictive, this class of functions subsumes the
class of extensively studied separable models given by

Yu = �0 +�1ê4X1u5+�2ê4X2u5+ · · · +�Kê4XKu5+ �0

Furthermore, in the linear modeling literature, if the re-
sponse function includes a term that is a function of two
or more covariates, say Xk1u

∗ Xk2u
, then the response

function can be converted to a linear model by introduc-
ing a new covariate that is the product of covariates k1

and k2. More generally, if the response function is a func-
tion of several covariates, say �4Xk1u

1Xk2u
1 0 0 0 1Xkdu

5, with
1 ¶ k1 < k2 < · · · < kd ¶ K, then the response function
can be transformed to satisfy the assumptions of Theo-
rem 1 by introducing a new covariate that is the joint of
Xk1u

1Xk2u
1 0 0 0 1Xkdu

.
Theorem 1 shows that under (5) and (6), as the num-

ber of bins in BOSS-B problem grows and perfectly opti-
mized solutions are identified, Ȳ 1

SC
N

− Ȳ 0
SC

N

monotonically

converges to E4Ȳ 1
N − Ȳ 0

N � 8Tu = 19u∈SN
5, and hence gives

the minimally biased estimator of ATT that can be obtained
using the available observed data.

3. Computational Analysis
This section illustrates the theory of §2 by presenting a
simple numerical example. Note that its contribution to the
paper is more illustrative than fundamental. By setting up
a computational model for a limited problem and using a
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generic optimization algorithm to attack this problem, the
reader can visually inspect the dynamics of the proposed
balance optimization and the convergence of the proposed
estimator to the treatment effect. It also provides grounds
to discuss future computational challenges for BOSS.

The simulated experiments presented illustrate that as a
balance measure approaches its optimal value, the bias in
the estimate of the treatment effect decreases. Additionally,
as the number of bins increases, (4) allows for more accu-
rate estimation of the treatment effect.

3.1. Experimental Setup

To illustrate the BOSS-B approach, two data sets were cre-
ated, designated as data3c10k and data10c10k. Each data
set consists of a treatment group of 500 units and a control
pool of 10,000 units using 3 and 10 covariates, respectively.
The data sets were created by first randomly generating a
pool of 5,000 potential treatment individuals and a pool
of 10,000 control individuals, with the covariate values for
each unit drawn from a normal distribution. Once the units
were generated, each unit i was assigned a response value
using the expression

Y
1405
i = 10 + 7X1i + 6X2i + 5X3i − 3X4i + 3X5i + 2X6i

+X7i −X8i + 005X9i + 001X10i + �i1 (7)

where �i ∼N40125. (The extra covariate terms are omitted
for data3c10k.) Under this formulation, there is no treat-
ment effect (i.e., exposure to treatment has no effect on the
response): ATT = 0.

Once the individuals were created, a treatment group
of 500 units was drawn randomly but nonuniformly from
the pool of potential treatment individuals. Individuals with
covariate values in the tails of the covariate distribution
were drawn with higher probability than those with values
in the center of the distributions, ensuring that the resulting
treatment and control groups had different covariate dis-
tributions. Figure 3 shows the initial distributions in the
treatment group and control pool for covariates 1, 2, and
3, respectively, of data3c10k. In these histograms, covari-
ate values are separated into 32 uniformly sized bins. The
number of control units in a bin was normalized by a factor
of 1/20 to account for the difference in size between the
treatment group and control pool. The histograms indicate
that the covariate distributions of the treatment group differ
from those of the control pool, particularly for the first two
covariates.

Optimization was performed using a simulated anneal-
ing algorithm (Kirkpatrick et al. 1983). In the experiments,
the preselected treatment group was used, and the desired
control group size was 500 units. The first step in the algo-
rithm is to bin the data: each unit is converted from a
vector of covariate values 8X1i1X2i1 0 0 0 1XKi9 into a vec-
tor of bin numbers 8X ′

1i1X
′
2i1 0 0 0 1X

′
Ki9 where X ′

ki = j if
and only if tkj−1 ¶ Xki ¶ tkj (i.e., unit i falls into bin j

for covariate k). In the experiments, the bin thresholds
were uniformly spaced across the covariate distributions,
with R4k5 set to a given value (an input parameter) for
all covariates k = 1121 0 0 0 1K. Moreover, a unique covari-
ate cluster was created for each individual covariate. By
Theorem 1, these covariate clusters are sufficient for gen-
erating an accurate estimate of ATT because of the separa-
bility of the response function (7).

After binning the data, the simulated annealing algorithm
begins with an initial control group consisting of a random
subset of 500 units from the control pool. At each itera-
tion, the algorithm attempts a 1-exchange, replacing one
unit in the control group with an unselected unit in the con-
trol pool. If the exchange improves (4), then it is accepted
unconditionally. Otherwise, it is accepted with some proba-
bility according to the input parameters. A random restart is
applied when little progress has been made in (4) for some
number of iterations or after the algorithm identifies a per-
fectly optimized control group. The algorithm terminates
after performing a preset number of iterations. For more
details, see Algorithm 1 in the paper’s online supplement.

3.2. Experimental Results

Several experiments were conducted on the two data sets
(data3c10k and data10c10k) using uniformly spaced bins
with R4k5 = 418116, and 32 for all k = 1121 0 0 0 1K. This
sequence was chosen because it forms a bin scheme where
each successive set of bins simply subdivides the previous
set of bins in half, creating a telescopic increase in the
number of bins.

For each data set and bin scheme, 25 runs of the simu-
lated annealing algorithm were performed, with a different
random seed used for each run. Throughout a run, every
50th identified control group or perfectly optimized control
group was processed and stored, along with Kolmogorov-
Smirnov (KS) two-sample goodness-of-fit test statistics for
the treatment and control covariate distributions. For data
sets with multiple covariates, the KS test statistic values
were averaged over all the covariates. Upon completion
of the experiments, any duplicated control groups were
removed. This was implemented by assigning a hash num-
ber to each control group based on its units.

Note that because the search process moves by
1-exchange, each successive control group that is reported
by the algorithm will have a high degree of overlap with
the previously reported control group. To prevent overlap
among the perfectly optimized solutions, random restarts
were performed after each perfectly optimized solution was
identified. This facilitates the generation of perfectly opti-
mized control groups with minimal overlap between them.

Table 1 summarizes the features of optimal solutions
obtained in solving the data3c10k instance. In the table,
the objective function in (4) is referred to as Difference
Squared (DiffSqr). Column Bins specifies the number of
bins used (per covariate), and the column Observations
reports the number of perfectly optimized solutions that
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Figure 3. Initial covariate distributions of treatment group and control pool (normalized) for data3c10k.
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were identified. The remaining two columns list the treat-
ment effect and the KS two-sample test statistic (averaged
over the covariates), respectively. No results are presented
for data10c10k because perfectly optimized solutions were

Table 1. Optimal solutions for data3c10k with respect
to DiffSqr objective.

Treatment Kolmogorov-
effect Smirnov

Bins Observations Mean SD Mean SD

4 251214 202904 002684 001155 000090
8 171404 101434 001605 000825 000072

16 71689 002380 001098 000369 000038
32 833 000122 000900 000274 000027
64 0 N/A N/A N/A N/A

not obtained for this data set when more than four bins per
covariate were used.

Table 1 shows that as the number of bins for each covari-
ate increases, the estimator mean tends toward the true ATT
value of zero. The KS test statistic values also indicate an
increasingly higher level of balance in the covariate distri-
butions of the treatment and control groups.

Table 2 shows the difference in covariate means for the
treatment group and control pool, as well as the differ-
ence in covariate means for the treatment group and an
optimized control group obtained by solving BOSS-B with
R4k5= 32 for all k = 1121 0 0 0 1K. Observe that the bias due
to covariate imbalance in the treatment group and control
pool is largely removed by the optimization.

Next, for a given data set and number of bins, all
recorded control groups were sorted by their scores in (4).
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Table 2. Difference of covariate means for covariates
before and after optimization with R4k5= 32.

Difference of means

Before After
Data set Covariate optimization optimization

data3c10k 1 00869 00009
2 00862 00001
3 00160 00007

data10c10k 1 00539 00007
2 00553 00014
3 00420 00001
4 −00355 00002
5 00446 00028
6 00346 00007
7 00407 00010
8 −00180 00005
9 00208 00002

10 00152 00009

Then, control groups in a fixed range of scores were
aggregated and their estimated treatment effects and other
relevant statistic values were averaged. Tables 3 and 4
display these average values obtained with R4k5 = 32 for
all k = 1121 0 0 0 1K. Figures 4 and 5 show the trends for the
treatment effect and its standard deviation, as the objec-
tive function value decreases. In general, as the score for
(4) approaches zero, the estimated treatment effect tends
toward 0, the true ATT value. Despite the inability to obtain
perfectly optimized solutions for data10c10k, accurate ATT
estimates are still obtained when the objective function is
close to 0.

Table 3. Solutions for data3c10k ranked by DiffSqr
objective using 32 bins.

Treatment Kolmogorov-
effect Smirnov

OF range Observations Mean SD Mean SD

¶1e−07 833 000122 000900 000274 000027
1e−07–1.0 41377 000679 000950 000282 000028
1.0–2.0 41675 001478 001111 000294 000029
2.0–3.0 31747 002291 001173 000312 000032
3.0–4.0 31098 002948 001183 000328 000034
4.0–5.0 21751 003596 001233 000344 000035
5.0–6.0 21308 004085 001304 000356 000035
6.0–7.0 21022 004666 001303 000370 000036
7.0–8.0 11873 005173 001306 000381 000037
8.0–9.0 11670 005584 001315 000394 000037
9.0–10.0 11544 005881 001355 000402 000038
10.0–20.0 101937 007889 001790 000449 000047
20.0–30.0 81313 101213 001828 000528 000044
30.0–40.0 71009 104045 001974 000597 000046
40.0–50.0 61148 106617 001956 000659 000045
50.0–60.0 51416 108779 002050 000713 000047
60.0–70.0 41910 200778 002125 000762 000048
70.0–80.0 41437 202490 002160 000808 000049
80.0–90.0 31920 204258 002159 000854 000049
90.0–100.0 31745 205803 002250 000892 000052

Table 4. Solutions for data10c10k ranked by DiffSqr
objective using 32 bins.

Treatment Kolmogorov-
effect Smirnov

OF range Observations Mean SD Mean SD

¶2.0 0 N/A N/A N/A N/A
2.0–3.0 1 002168 000000 000260 000000
3.0–4.0 25 002409 001056 000251 000014
4.0–5.0 116 002809 001113 000251 000016
5.0–6.0 229 003567 001065 000255 000014
6.0–7.0 332 004024 001198 000259 000013
7.0–8.0 327 004467 001189 000262 000016
8.0–9.0 377 004914 001200 000267 000016
9.0–10.0 350 005159 001225 000271 000015
10.0–20.0 31305 007416 001719 000295 000021
20.0–30.0 31105 100607 001679 000328 000021
30.0–40.0 21737 103523 001748 000359 000021
40.0–50.0 21677 106002 001855 000384 000022
50.0–60.0 21608 108155 001970 000409 000022
60.0–70.0 21649 200576 001899 000434 000023
70.0–80.0 21499 202616 001956 000456 000024
80.0–90.0 21527 204404 002036 000477 000024
90.0–100.0 21221 206453 002113 000499 000024

Note that in Figures 4 and 5, there is a break where the
objective function range changes from increments of 1 to
increments of 10 between 9–10 and 10–20. This break is
shown with bars in the plot and on the axis. Also, results
from control groups with scores for (4) that were greater
than 100 are available in the online supplement.

3.3. Comparison with an Alternate
Balance Measure

The BOSS framework is not limited to just the BOSS-B
formulation presented in §2. Indeed, the goal of the BOSS

Figure 4. data3c10k with 32 bins: Average treatment
effect for varying objective function ranges.
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Figure 5. data3c10k with 32 bins: Average treatment
effect for varying objective function ranges.

0

0.5

1.0

1.5

2.0

 2.5

3.0

A
vg

. T
E

 fo
r 

co
nt

ro
l g

ro
up

s 
in

 O
F

 r
an

ge

Objective function range

TE

TE–SD
TE+SD

2.
0

–
3.

0

3.
0

–
4.

0

4.
0

–
5.

0

5.
0

–6
.0

6.
0

–7
.0

7.
0

–8
.0

8.
0

–9
.0

9.
0

–1
0.

0

10
.0

–2
0.

0

20
.0

–3
0.

0

30
.0

–4
0.

0

40
.0

–5
0.

0

50
.0

–6
0.

0

60
.0

–7
0.

0

70
.0

–8
0.

0

80
.0

–9
0.

0

90
.0

–1
00

.0

framework is to handle any proposed measure of bal-
ance M4ST1SC5. For example, one can use a difference
of means as an optimization objective. Let �4S1 k5 =

41/�S�5
∑

s∈SXks be the mean value of covariate k across
the individuals in S. Then, a BOSS objective is to find a
control group SC ⊂C with �SC� = �T� that minimizes

K
∑

k=1

∣

∣�4SC1 k5−�4T1 k5
∣

∣0 (8)

Note that such analysis was done by Rubin (1973) for
one covariate, where it was referred to as mean matching.
With BOSS objective (8), no preprocessing of the data is
necessary, because no binning is performed (compared to
BOSS-B). Table 5 shows the performance of objective (8),
referred to as DOM for difference of means, in determin-
ing the treatment effect across a wide range of solutions
obtained during the simulated annealing algorithm execu-
tion. As the score for (8) approaches 0, the estimated treat-
ment effect tends toward the true treatment effect of 0,
which is as expected given the linear nature of the response
function (7). Results for control groups with scores for (8)
greater than 1000 are available in the online supplement.

Observe that using (8) as a BOSS objective compared
to (4) results in more accurate ATT estimation. This obser-
vation might lead one to assume that (8) is better than (4)
at capturing balance. However, the KS scores are worse
with (8), indicating that although the covariate means are
close, the covariate distributions are not as balanced as
those for the solutions obtained with (4). An additional set
of experiments was performed to illustrate the importance
of balancing the distributions. These experiments used a
new data set, data3c10kn, created by taking the same indi-
viduals from data3c10k and using the response function

Y
1405
i = 10 + eX1i +X2

2i + 001X3
3i + �i0 (9)

Table 5. Solutions for data10c10k ranked by DOM
objective.

Treatment Kolmogorov-
effect Smirnov

OF range Observations Mean SD Mean SD

¶0.001 0 N/A N/A N/A N/A
0.001–0.01 121004 000596 000857 004101 000258
0.01–0.02 661859 000789 000913 004167 000276
0.02–0.03 941364 001115 000916 004201 000272
0.03–0.04 941269 001548 000920 004200 000264
0.04–0.05 831005 002015 000938 004199 000265
0.05–0.10 2861406 003434 001323 004236 000266
0.10–0.20 3741035 007421 002066 004419 000276
0.20–0.30 2901608 102774 002244 004721 000291
0.30–0.40 2551131 107747 002439 005027 000289
0.40–0.50 2381708 202529 002560 005347 000306
0.50–0.60 2441812 207030 002688 005667 000301
0.60–0.70 2411576 301296 002770 005999 000315
0.70–0.80 2261956 305528 002829 006350 000313
0.80–0.90 2291046 309600 002831 006688 000312
0.90–1.00 2351354 403380 002934 007032 000313

Five runs of the simulated annealing algorithm were per-
formed with data3c10kn, using both (4) with R4k5 = 32
for all k = 1121 0 0 0 1K and (8). The best solutions obtained
from these runs are reported in the first two rows of Table 6.
In this case, the best solutions obtained with (4) lead to
better estimates of ATT than those obtained with (8). Opti-
mizing (4) results in more accurate estimation because The-
orem 1 still holds for (9) due to the separability of the
covariate terms. Moreover, the KS scores are better, indi-
cating better balance for the covariate distributions.

The function (8) can be improved by incorporating
higher moments of the distributions, such as the variance.
Let s24S1 k5= 41/4�S�−155

∑

s∈S4Xks −�4S1 k552 be the
unbiased sample variance of covariate k across the individ-
uals in S. Then two additional BOSS objectives can be
defined as

min
K
∑

k=1

∣

∣�4SC1 k5−�4T1 k5
∣

∣

+

K
∑

k=1

∣

∣s24SC1 k5− s24T1 k5
∣

∣ (10)

and

min
K
∑

k=1

∣

∣�4SC1 k5−�4T1 k5
∣

∣

2

+

K
∑

k=1

∣

∣s24SC1 k5− s24T1 k5
∣

∣0 (11)

These two objectives aim at finding control groups with the
first and second moments of the covariate distribution as
close as possible to those of the treatment group. Objectives
(10) and (11) differ in the weight they place on the differ-
ence of means, with (11) squaring this difference for each
covariate. For data3c10kn, the results of optimizing these
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Table 6. Best solutions for data3c10kn for various objectives.

Treatment Kolmogorov-
effect Smirnov

Objective OF range Observations Mean SD Mean SD

DiffSqr(32) ¶1e−07 156 −000170 000875 000804 000078
DOM ¶0.001 71086 −103889 003395 002770 000226
DOM + DOV ¶0.001 357 000392 000959 001669 000179
DOM2 + DOV ¶0.001 403 000986 001057 001435 000121

two objectives (referred to as DOM + DOV and DOM2 +

DOV ) are much better than those obtained for (8), as shown
in Table 6.

In a similar manner, higher moments can be included in
the objective being optimized. Including higher moments
ensures that the two distributions are closer and closer
together, which is exactly what the BOSS-B formulation
aims to achieve, albeit in a more direct manner.

3.4. Comparison with Matching Methods

To demonstrate the performance of BOSS with respect to
existing matching methods, the Matching package (Sekhon
2011) was used. The package allows for matching based
on propensity score, matching directly on the values of the
covariates, or some combination of the two. For the pur-
poses of testing, a standard logistic regression model was
used to estimate the propensity score.

Table 7 compares the best solutions (as defined by
the objective function value, with ties broken arbitrarily)
obtained by the BOSS procedure for objectives (4) with
R4k5 = 32 for all k = 1121 0 0 0 1K, (8), (10), and (11) with
the solutions returned by both propensity score matching
and matching on the covariates for the data3c10kn data set
(with the nonlinear response function (9)). Column Objec-
tive lists the method used to obtain the solution, column
OF Score lists the function value of the best solution for
the BOSS methods (no objective score is provided by the
Matching package), column Treatment Effect lists the esti-
mate of the treatment effect computed from the best solu-
tion, and columns Kolmogorov-Smirnov Mean and Max list
the average and maximum values of the KS test statistic
for the covariate distributions in the treatment group and
the best control group.

Table 7. Comparison of single best solutions for BOSS
and matching for data3c10kn.

Kolmogorov-
Smirnov

Treatment
Objective OF score effect Mean Max

DiffSqr(32) 0.0 −001142 00025 00026
DOM 1.50e−5 −009877 00093 00118
DOM + DOV 3.77e−4 000271 00062 00088
DOM2 + DOV 2.69e−4 001154 00045 00060
Prop. score N/A −103434 00125 00158
Cov. matching N/A 000943 00025 00034

The propensity score model fares the worst in producing
accurate estimates of the treatment effect, whereas direct
matching and BOSS with objective functions (4), (10), and
(11) all produce good results. The reason for the poor per-
formance of the propensity score approach is the use of a
linear model for estimating the propensity score, whereas
the actual response function is nonlinear. A better model for
estimating the propensity score would potentially improve
these results. It should also be noted that the propensity
score approach produces the worst balance as measured by
the KS statistic, whereas BOSS with objective function (8)
also produces unsatisfactory levels of balance, with BOSS
with objective function (4) and covariate matching perform-
ing the best.

A difficulty of matching on the covariates is that close
matches become difficult to find as the number of covari-
ates increases. To demonstrate this, the matching proce-
dures were also run on the data10c10k data set. Table 8
shows the best solutions obtained by the BOSS approaches
and the matching approaches. Because data10c10k uses a
linear response function (7), both propensity score match-
ing and BOSS with (8) perform better than they did in the
previous case. This improvement occurs because balanc-
ing covariate means for a linear response function produces
accurate ATT estimates. Estimating the propensity score
with a linear model will accomplish this indirectly, whereas
optimizing (8) will accomplish this directly. On the other
hand, the effectiveness of covariate matching is greatly
reduced due to the difficulty of finding close matches on
10 different covariates. Finally, BOSS with (4) is seen to
produce the best covariate balance as measured by the KS
test statistic, whereas the matching approaches produce the
worst covariate balance.

Table 8. Comparison of single best solutions for BOSS
and matching for data10c10k.

Kolmogorov-
Smirnov

Treatment
Objective OF score effect Mean Max

DiffSqr(32) 209502 002168 00026 00036
DOM 000029 001294 00039 00056
DOM + DOV 000157 001857 00037 00048
DOM2 + DOV 000158 001947 00045 00052
Prop. score N/A −001148 00066 00114
Cov. matching N/A 20818 00067 00088
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3.5. Discussion of Results

Inspecting the reported results with the goal of evaluating
the potential effectiveness of the BOSS approach, the con-
ducted experiments well illustrate the theory of §2. The
simulated annealing algorithm was able to perform well for
BOSS-B and several other objectives, which suggests that
specialized algorithms could be much more effective and
efficient in finding optimal balance. Additionally, the BOSS
approach performed favorably when compared with some
of the existing matching methods proposed in the literature.

The accurate estimates of ATT produced by BOSS in
these experiments suggest that BOSS may be a viable
approach to successfully determine whether or not a treat-
ment effect exists in problems that approximate real-
world scenarios for which observational data exists. For
the BOSS-B formulation in particular, as R4k5 increases,
(4) provides a better measure of covariate balance, and
hence a better estimate of the treatment effect. However,
as R4k5 increases, it also becomes more difficult to iden-
tify control groups that are perfectly optimized with respect
to (4). Certainly there are improvements that can be made
in terms of the optimization process, but determining the
appropriate value for R4k5 and even the appropriate bin
thresholds will be a major factor as well. For the former,
Cochran (1968) states that for one covariate, subclassifica-
tion with five categories is sufficient to remove about 90%
of the existing bias under certain conditions. Rosenbaum
and Rubin (1983) present similar results when subclassi-
fying on the propensity score. Determining the appropriate
locations for bin thresholds will be dependent upon the
nature of the data. See Iacus et al. (2012) for further dis-
cussion of these issues.

Another issue is determining which covariate clusters to
use. In the experiments presented here, the covariate clus-
ters were chosen based on knowing the separability of the
response function. In a real-world problem, the response
function will almost certainly be unknown, and therefore
some guesswork will be involved in appropriately picking
the covariate clusters.

For the general BOSS problem, there remains signifi-
cant work to be done in determining appropriate balance
measures for optimization. In the simulated example prob-
lems considered here, the difference of means objective (8)
was sufficient for a separable linear response function, but
not for a separable nonlinear one. Although incorporating
the variance into the objective (10) yielded more accurate
results for the nonlinear response function, this may not
always be the case. Determining exactly what balance mea-
sures should be optimized remains an open problem.

4. Research Directions
BOSS introduces a new paradigm for developing an analyt-
ical toolbox based on techniques from operations research
to create a solution methodology where human bias, asso-
ciated, for example, with defining distance measures for

matching or guessing the form of a regression model, is
eliminated, and the accuracy of treatment effect estimation
is limited solely by the complexity of an optimization prob-
lem (NP-hard) and available computational power.

To make a connection between the balanced marginal
distributions and the balanced joint distributions of covari-
ates, the concept of copulas (Nelsen 1999) may be useful
if a copula family can be designed to incorporate contin-
uous and categorical covariate values simultaneously with
a sizable number of parameters. In many cases, however,
preserving the same covariance structure over the covariate
values in the control and treatment groups might suffice.
For example, if a treatment group consists only of pairs
AA and BB, they would have the same marginal distribu-
tions as a control group with pairs AB and BA, because
both A and B appear twice; the joint distributions, however,
would not align. Examining covariance structures would
identify and help alleviate this issue. One approach would
be to minimize the covariance matrix difference directly,
incorporating it into BOSS as part of the objective function
or as a constraint. Note that some widely used matching
approaches (e.g., propensity score matching) operate under
the Stable Unit Treatment Value Assumption (SUTVA) that
is violated when observations on one unit are affected by
the particular assignment of treatment to other units. The
BOSS approach also relies on this strong assumption, even
though it may not hold in real observational studies and
randomized experiments.

The issue of space traversal, or how well BOSS explores
the space of available control groups, is also a rich area for
future exploration. For algorithms that generate a large num-
ber of optimal or near-optimal solutions, ensuring that these
solutions are sufficiently diverse will allow for better esti-
mates on the distribution of the treatment effect. One way in
which this can be accomplished is by iteratively running the
BOSS algorithm, finding an optimal control group, remov-
ing the members of the control group from the control pool,
and then rerunning the BOSS algorithm using the smaller
control pool. Alternatively, control individuals can be pre-
vented from being used in a control group after appearing
in some number of other identified control groups.

In problems with a large number of covariates and/or
covariate clusters to balance, it is unlikely that perfectly
optimized control groups exist when using even a moder-
ate number of bins for each covariate. Therefore, further
research on binning-based measures of balance is required,
and bounds are needed on the quality of a control group
when it is not perfectly optimized. In the simulated exper-
iments reported in §3, it was observed that many control
groups that were near-optimal led to the correct decision
with regards to the effectiveness of treatment, although the
exact dynamics of this phenomenon are not completely
clear. Alternate ways to assess the quality of a control group
in addition to the objectives presented here should also be
considered.
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Additionally, developing algorithms to optimize directly
on covariate balance measures such as the Kolmogorov-
Smirnov two-sample test statistic instead of using approx-
imation techniques as binning is a promising direction. In
the current implementation, using the KS score instead of
objective (4) caused the search process to stall and fail to
make significant progress. This suggests that a 1-exchange
neighborhood is insufficient when used in conjunction with
the KS score.

For BOSS to be useful in practice, computational tools
need to be developed that can analyze distribution(s) of
the designed estimator(s). Besides point estimation, social
scientists often resort to hypothesis testing as well as build-
ing confidence intervals, the tasks where estimating stan-
dard error becomes important. Although our computational
investigations indicate that the distribution of the BOSS
estimators presented in this paper appears to be Gaussian,
more research is required to establish this result theoreti-
cally for the subset-selection based approach.

The challenges presented should be addressed simul-
taneously by research communities over various domains
of science. Statisticians might be interested in developing
a copula approach for the balancing of joint distribu-
tions, whereas operations researchers and computer scien-
tists might work on more efficient optimization algorithms.
Opportunities for interdisciplinary collaboration may prove
to be fruitful as this research direction continues to expand
and evolve.

Supplemental Material

Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.1120.1118.
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