
The Limits of Ecological Inference: The Case
of Split-Ticket Voting

Wendy K. Tam Cho University of Illinois at Urbana-Champaign
Brian J. Gaines University of Illinois at Urbana-Champaign

We examine the limits of ecological inference methods by focusing on the case of split-ticket voting. Burden and Kimball
(1998) report that, by using the King estimation procedure for inferring individual-level behavior from aggregate data, they
are the first to produce accurate estimates of split-ticket voting rates in congressional districts. However, a closer examination
of their data reveals that a satisfactory analysis of this problem is more complex than may initially appear. We show that
the estimation technique is highly suspect in general and especially unhelpful with their particular data.

Alarge class of interesting problems in political sci-
ence involves drawing inferences about the be-
havior of individuals using only aggregate data.

Using data in which some information has been lost in
the aggregation process to retrieve information about in-
dividuals is known as “ecological inference” or “cross-level
inference.” Such inferences are particularly important for
the study of voting, since the use of secret ballots usually
makes it impossible to obtain objective individual-level
data on vote choices. Empirical work on voting behavior
has thus had to proceed on two tracks. One may analyze
respondents’ self-reports of voting behavior (and other
traits) from surveys, or else one may use aggregate offi-
cial election returns (and other aggregated data) for some
geographic area such as a district, constituency, precinct,
county, commune, etc. Using survey data is, of course,
not always an option and is rarely possible for most his-
torical analyses. An additional complication is that even
when survey data exist, they are prone to various biases
and errors related to sample-selection effects, priming,
systematic misreporting, and so on. In some cases, aggre-
gate data may even provide better leverage on particular
theoretical problems than do microlevel survey data, even
when the behavior of interest is, in fact, actions taken by
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individuals (e.g., Kramer 1983). Analyzing aggregate data
is often the only option.

Developing statistical methods for drawing useful es-
timates of individual-level behavior (e.g., voting) from ag-
gregate data is, unfortunately, justly characterized as dif-
ficult. In ecological regression problems, we are interested
in the joint distribution of two or more variables, but we
observe only the marginal distribution of each variable.
There is, of course, no unique “solution,” since many dif-
ferent joint distributions are consistent with the observed
marginals. This inverse problem is clearly ill-posed. Under
these circumstances, one approach is to make a number
of convenient assumptions to induce a completely spec-
ified statistical model that is amenable to standard esti-
mation techniques. Though there are an infinite number
of possible solutions, it is frequently true in a particular
situation that some criteria may be more reasonable than
others.

For ecological inference to yield genuine insight, a
number of circumstances must be met. When these con-
ditions are met or when this type of analysis is the only re-
course, ecological inference may be a reasonable research
strategy, though extreme caution must always be exer-
cised, at both the analysis and the interpretation stages.
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At minimum, three conditions are necessary (but far from
sufficient). First, the data should appear to be amenable
to ecological inference, i.e., there should be evidence that
the aggregate data are “informative” about the microlevel
process. We elaborate further on the term “informative”
below. Second, there should be some evidence that the ag-
gregation process did not introduce bias that is not mod-
eled. And, third, one should have a good microtheory and
an explicit understanding of how that microtheory should
be related to the observed macro data. When these con-
ditions hold, one may wish to implement an ecological
inference model.

In this article, we discuss the circumstances surround-
ing this highly tenuous estimation. To situate our dis-
cussion, we focus on the EI estimator proposed by King
(1997) and its application to the case of split-ticket voting,
as expounded on by Burden and Kimball (1998). We pro-
ceed as follows. The next section identifies and describes
three conditions necessary for ecological inference to be
a useful method. Thereafter, we revisit each condition in
more depth by reconsidering Burden and Kimball’s anly-
sis of split-ticket voting in American elections. Our anal-
ysis indicates that the Burden and Kimball study yields
little true insight into the split-ticket voting phenomena,
and more generally, that their foray into the aggregate
data realm is illustrative of the problems that one should
expect to encounter when conducting ecological infer-
ence analyses. We conclude that while the challenges in-
herent in ecological inferences are not insurmountable,
the careful researcher will find the task to be fiercely
daunting.

Conditions Amenable to
Ecological Inference

The first condition we explore is the idea that the ag-
gregate data need be “informative” concerning the un-
derlying microlevel data. As Robinson (1950) has shown,
there is no clear or direct relationship between data that
are observed at different levels of aggregation. Indeed, this
conundrum has puzzled scholars for decades (Gehlke and
Biehl 1934). Nonetheless, some aggregate data are more
informative about the microdata than others. In this sec-
tion, we focus on what it means for aggregate data to be
“informative,” and what consequences arise when data are
not very informative, but one proceeds with estimation
just the same. We then discuss how aggregation from the
individual level can introduce troublesome biases. Lastly,
we describe the role of microtheories in the analysis of
macrodata. Without loss of generality, our discussion is

TABLE 1 A Reduced Split-Ticket Problem for
District i

House Vote

Presidential Vote Democrat Republican Vote

Democrat �b
i 1 − �b

i Xb
i

Republican �w
i 1 − �w

i Xw
i

Fraction of Voters T i 1 − T i 1

couched in a framework where the macrolevel data are
election districts and the microlevel counterparts are the
individual-level voting data.

Informative Data
Deterministic Information: Bounded

Parameters

One way to gauge the level of information contained in
aggregate data is to consider all of the deterministic infor-
mation contained therein. Consider a simple problem in
split-ticket voting like the one shown in Table 1. Data for
each district can be summarized by such a table. The avail-
able data include the values T , the Democratic proportion
of the House vote, (1 − T), the Republican proportion
of the House vote, Xb, the Democratic proportion of the
Presidential vote, and Xw = 1 − Xb, the Republican pro-
portion of the Presidential vote.1 What we do not have,
but may be interested in estimating, are the proportions
of split-ticket votes: �w, the proportion of all those who
voted for the Republican presidential candidate who also
voted for the Democratic House candidate; and 1 − �b ,
the proportion of those who voted for the Democratic
presidential candidate who also voted for the Republican
House candidate.2 Since vote shares necessarily fall be-
tween 0 and 1, the unknown parameters �b and �w fully
characterize the table. The extent to which these param-
eters are further bounded within the unit square is the
deterministic aspect of an aggregate data set.

Suppose that the district shown in Table 1 had 100 vot-
ers, and that the Democratic vote totals for president and
House were 60 and 30, respectively. In that case, there

1Here, we retain Burden and Kimball’s notation. The superscripts b
and w are mnemonics for “black” and “white,” inapt to split-ticket
voting, but left over from the main running example in King’s book,
race and voting.

2One way to estimate these parameters is through the OLS model
originally proposed by Goodman (1953, 1959), where T = �b Xb +
�w Xw . Rearranging terms gives us the more familiar slope-intercept
form, T = �w + (�b − �w)Xb.
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cannot have been more than 30 voters who supported
both Democrats, and �b cannot exceed 30

60 = 0.5. Like-
wise, �w has an upper bound of 30

40 = 0.75, while both
parameters have a lower bound of 0. In this way, combina-
tions of marginal totals may exclude some values for each
parameter, for each district. Note that in distributing the
30 Democratic House votes between the Democratic and
Republican presidential voters, we simultaneously deter-
mine both �b and �w, since the parameters are dependent.
If �b = 0.5, then �w is necessarily 0, and so on.3

By plotting all logically possible pairs of parameter
values, one can succinctly summarize the deterministic

information for each observation. Since �w = T − �b Xb

Xw ,
when one plots the possible values of �w on the y-axis
and the values of �b on the x-axis, the result is a line with
intercept T

Xw and slope − Xb

Xw . This line has been termed a
“tomography line,” and there is one for each observation.4

Both parameters are bounded within the [0, 1] interval,
but those lines that do not extend across the entire unit
square are further bounded, and one may be more success-
ful when estimating the true parameter values for those
observations. For estimation problems that can be simpli-
fied to 2 × 2 tables, then, a “tomography plot” succinctly
displays the scope of the problem.

Qualitative Assessment of
Nondeterministic Information

In addition to taking account of the deterministic bounds,
one might incorporate some kind of assumption about
how districts are related in order to arrive at estimates of
plausible mean parameter values for a set of districts, or,
sometimes, of parameters for each district. There are thus
two diagnostic uses for tomography plots. First, they show
all available deterministic information in a problem, and
thereby reveal, in an informal sense, how constrained are
the parameters, and thus how easy or hard the estimation
problem will be. Second, one may examine these plots to
assess whether an assumption that the (�b , �w) pairs were
drawn from a distribution with a known form seems rea-
sonable for the data at hand. The simplest distributional
assumption is the case where all the �w

i s are equal and all
the �b

i s are equal. In this case, it is easy to determine the

3Duncan and Davis (1953) is the canonical source on how to com-
pute upper and lower limits (bounds) on the possible parameter
values in light of the known marginals.

4Achen and Shively (1995, 208–09) originally proposed that one can
succinctly summarize all the known information in an aggregate
data problem by creating a plot with a line for each of the observa-
tions. King (1997) later applied the name “tomography plot.”

values of the common �w and �b . Consider the very sim-
ple case with two observations or districts. The subscripts
indicate the district.

T1 = X1�b + (1 − X1)�w (1)

T2 = X2�b + (1 − X2)�w. (2)

In this case, one can easily solve equation (1) for �b

to obtain �b = T1 − (1 − X1)�w

X1
. Since �b has a common

value across districts, we can then substitute this value
for �b into equation (2) to obtain a value for �w, �w =
T2 X1 − T1 X2

X1 − X2
. Likewise, by solving for �w first and then sub-

stituting that expression back into the original equation,
one finds that �b = T2(1 − X1) − T1(1 − X2)

X2 − X1
. Note that in this

case all of the tomography lines will intersect at a common
point—the common value of �w and �b . However, vir-
tually all tomography plots are inconsistent with a single
point of intersection, and instead, imply many different
points of intersection. The obvious explanation in these
cases is that all of the �ws and �bs are not equal to one
another. That is, from precinct to precinct, the propor-
tion of people splitting tickets varies. One way to pro-
ceed is to make some assumption about the underlying
joint distribution for (�b , �w). King’s model imposes the
assumption that the joint distribution of �b and �w is
truncated bivariate normal. Hence, when implementing
King’s model, one examines tomography plots for some
evidence of consistency with an underlying truncated bi-
variate normal (TBVN) distribution. 5

Testing a hypothesis about the distribution from
which data were drawn is fairly straightforward when the
data are directly observed. In this case, however, we have
only a range of possible values for each observation, as
mapped out by the lines. A single tomography plot is con-
sistent with many different individual-level data sets, so
many different joint distributions will be consistent with
any given set of tomography lines. In that sense, the in-
formation gleaned from tomography plots is never more
than suggestive and does not allow one to make definitive
claims about whether particular distributional assump-
tions obtain. To say that a tomography plot is “informa-
tive” is merely to report that one or two conditions are
met. If most of the tomography lines seem to intersect in
a region, then it is more likely (but not certain) that the
actual individual-level data are clustered there. In turn,
this area marks a plausible location for the mode of the
joint distribution of �s. Second, if there are relatively nar-
row bounds on one or both parameters, one can further

5King also has a nonparametric model, but it is infrequently used.
Indeed, we have never seen an application of it, by King or anyone
else. Hence, we do not discuss this model hereafter.
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TABLE 2 The Link Between Tomography Plots and the Distributional
Assumption

TBVN Assumption Correct TBVN Assumption Incorrect

Cell 1 Cell 2
“Informative” Correct standard errors Incorrect standard errors
Tomography Plot Small standard errors Small and misleading standard errors

Cell 3 Cell 4
“Uninformative” Correct standard errors Incorrect standard errors
Tomography Plot Large standard errors Large and misleading standard errors

limit the possible parameters of this distribution. At best,
though, one can conclude that the data are consistent with
a unimodal distribution, when there is an area of inter-
section. On the other hand, if no area of intersection is
evident and the bounds are wide, the implication is that
the TBVN distributional assumption is not reasonable.6

Whether the distributional assumption seems to hold or
not, meanwhile, is important not only for the purposes
of estimating means, but also because, at the estimation
stage, the computation of the standard errors is based on
the distributional assumption. So whether the standard
errors are correct or incorrect also depends on whether
the distributional assumption is correct or incorrect. This
logic is summarized in Table 2.

King contends that an “informative” tomography
plot can reasonably be assumed to have been generated
by a truncated bivariate normal distribution. That is, he
would attribute a higher probability that the output from
data analysis is summarized by Cell 1 rather than by Cell 2.
Similarly, if a tomography plot is uninformative, he claims
the data are less likely to have been generated from a
TBVN, and the situation is more likely to be summarized
by Cell 4 than by Cell 3. There is no particular reason to be-
lieve that the diagonal cells in Table 2 are more likely than
the off-diagonal cells. King’s contention here amounts to
an a priori assumption. Indeed, it would be very hard
to make a formal probabilistic argument about this link.
Our examples that follow should produce more intuition
on what is and is not revealed by a tomography plot. At
best, a researcher hopes that the tomography plot will be
informative: if it is not, the resulting standard errors may
be too large to be useful, or simply incorrect (see King
1997, ch. 16).

6If the tomography plot leads one to reject the TBVN distributional
assumption, a model incorporating a TBVN distribution might still
be adequate provided that one conditions on appropriate covariates.
If the data are consistent with different TBVNs, conditional on
values of some set of covariates, then the difficulty for estimation
is model specification. In this sense, the tomography plot can be
thought of as a diagnostic for the necessity of adding covariates to
the model.

One’s assessment of whether the distributional as-
sumption is correct thus depends on the nature of the to-
mography plot, though, of course, this assessment is never
definitive. Moreover, deciding whether a tomography plot
is informative is something of an art, no one has devised
a concrete measure for “informativeness” or any formal
test for accepting or rejecting the TBVN distributional
assumption (or any other distributional assumption) on
the basis of the plot.

Consider Figure 1. By the reasoning just discussed,
this plot is informative. First, while the bounds on �b

span the entire permissible [0, 1] range, the bounds on
�w are more narrow, and thus limit the range of possible
true values. Second, there is a general area of intersection
of tomography lines. If these lines are related (as implied
by the distributional assumption in the EI model) then
the true points on each line should fall within the area
where the lines generally intersect. In this plot, the area of
“general intersection” clearly falls at approximately (�b ,
�w) = (0.65, 0.20). While this point may not represent
the true values for �b and �w for all districts, if we have
no other information, these values seem to be reasonable
first guesses. Of course, not all tomography plots are as
seemingly informative. Sometimes the bounds will not be
very informative at all, and, in addition, the tomography
lines will not display any sort of commonality. Obviously,
in such cases, it is far riskier to force the distributional
assumption on the data.

Contrast the tomography plot in Figure 1 with the
tomography plot on the left in Figure 2, where we have
very little deterministic information about the underlying
data. No “general area of intersection” seems to be present,
and the bounds on both parameters are very wide. If one
insists on proceeding with EI, it will impose a truncated
bivariate normal distribution and then produce estimates
for the � parameters (overall means and one per dis-
trict) accordingly. The mode of the assumed TBVN, in-
dicated by the small square in the plot on the right in
Figure 2, is the estimate for the mean �b and �w values
for these data. However, “if the ultimate conditional dis-
tributions are not reasonably close approximations to the
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FIGURE 1 Informative Tomography Plot

This tomography plot is informative for two reasons. First,
all of the lines intersect in one general area of the plot. This
gives us some confidence in the assumption that all of
the lines are related—a key assumption of the EI model.
Second, while the bounds on �b are wide, the bounds on
�w are relatively narrow.

truth, incorrect inferences may result” (King 1997, 185).
Here, the tomography plot has not given us a good indica-
tion that the distributional assumption is correct—quite
the contrary.7

Moreover, it is perhaps even more important to ac-
knowledge that cross-level inference is always tenuous. In
particular, a plot may appear to be informative even if the
underlying data generation process is not at all well ap-
proximated by a TBVN. On the other hand, a plot may not
appear to be informative even though the true parameters
describing behavior do conform well to a TBVN distri-
bution. A variety of possible situations are illustrated in
Figure 3. In each plot, the true (�b , �w) pairs for each
district are indicated by a point on the tomography line.
In the first plot, the parameters are drawn from a TBVN

7It may be true that the distributional assumption will be reasonable
for data despite the appearance of multiple modes in the tomogra-
phy plot, because the appearance of multiple modes is, after all, sub-
jectively assessed. This fact again emphasizes the limited utility of
this diagnostic for determining whether a truncated bivariate nor-
mal distribution is a reasonable distribution for the data. In King’s
“Checklist” for ecological inference, Item 12b notes that even if EI
fits a high variance TBVN (i.e., one with “very wide contours”),
because of the presence of what appear to be multiple modes, “the
model should probably be modified to fit this feature of the data
[the multiple modes] anyway” (King 1997, 284).

distribution, and the plot is properly informative. In this
case, a researcher would likely proceed properly based on
this diagnostic. In the second plot, the parameters are not
drawn from a TBVN distribution, but the tomography
lines nonetheless appear to suggest a mode (i.e., it ap-
pears to be an “informative” plot).8 Here, a researcher
who proceeded with confidence would be grossly misled,
and the analysis would suffer accordingly. In the third plot,
the parameters are drawn from a TBVN distribution, but
it has relatively large standard deviations on both the �b

and �w parameters, and the resulting tomography plot
does not appear at all “informative.” On the basis of such
a tomography plot, there is no reason to favor the trun-
cated normal distribution as the underlying distribution,
even though, in this instance, it happens to be correct. In
short, inspecting tomography plots is worthwhile because
they illustrate bounds, but researchers must understand
that they are not definitive with respect to distributional
assumptions.

Aggregation Bias

A second condition that helps to surmount the huge
barriers to making ecological inferences is having data
that aggregate without bias. It is usually possible to ob-
tain reasonable estimates of individual-level parameters
given only aggregated data if the aggregated data set con-
tains no aggregation bias. The assumption of no aggrega-
tion bias holds if the parameters (�b and �w) are not
correlated with the regressors, i.e., the X variable. In
this application, that would mean that levels of Demo-
cratic President-Republican Representative and Republi-
can President-Democratic Representative voting are not
correlated with levels of support for the Presidential can-
didates. In fact, if no aggregation bias exists in the data,
simple OLS will provide reasonable, unbiased, and con-
sistent estimates of the overall means of the � parame-
ters (Goodman 1953). EI should perform likewise. So in
the very special case wherein data exhibit no aggregation
bias, there is no reason to favor EI over OLS.9 Meanwhile,

8The parameters for this plot were chosen via a procedure described
in King (1997, 162), not from an explicit distribution.

9One might choose EI over OLS because EI will output estimated
� parameters for every district. Burden and Kimball, for instance,
sought to test hypotheses about district-level variance in ticket-
splitting, and so needed district-level estimates. This ostensible “ad-
vantage” of EI, however, is largely illusory, as these district estimates
are not consistent and may lead to erroneous inferences. Some of the
grave risks entailed in using EI district estimates as dependent vari-
ables in other models have been chronicled by Herron and Shotts
(2003, 2004) and McCue (2001).
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FIGURE 2 Uninformative Tomography Plot

These tomography plots are much less informative than the tomography plot in Figure 1. The lines do
not intersect in any one general area of the plot. In addition, the bounds on both �b and �w are very
wide and span virtually the entire permissible range. The elliptical segments on the right are contour
lines that represent the estimated truncated bivariate normal distribution.

FIGURE 3 A Panel of Tomography Plots

Each plot indicates one of many situations that may characterize a tomography plot. Tomography plots can be helpful diagnostics, but are
highly indeterminate all the same.

when data are affected by aggregation bias, neither model
is trustworthy.10

Figure 4 uses tomography plots to illustrate how
aggregation bias causes difficulties for ecological infer-
ence. All panels show nine districts, each having 100 vot-
ers, with �b and �w representing the proportions voting
straight Democratic and voting for the Republican pres-
idential candidate and the Democratic House candidate,
respectively. In each scenario, these values are known, but

10Indeed, in one Monte Carlo analysis, the correlation between EI
and OLS estimates was 0.98 (Cho and Yoon 2001).

we consider how the analyst not knowing them would
proceed.

If the true voting patterns are represented by the left
panel, the tomography plot is clearly misleading. The lines
intersect around (0.7, 0.3), but this is not a good esti-
mate for the � pairs, whose actual mean is (0.5, 0.5). The
source of the error is aggregation bias: both � param-
eters are highly positively correlated with X , so that as
one moves up and right on the plot, the slopes of the to-
mography lines (which are entirely determined by X) de-
crease, causing the misleading region of intersection in the
lines.



158 WENDY K. TAM CHO AND BRIAN J. GAINES

FIGURE 4 Aggregation Bias and Tomography Plots

The left plot illustrates how correlation between the true � parameters and the regressor causes bias in � estimates. Both the center and
right panels have very little aggregation bias (correlations below 0.10). The TBVN distributional assumption fits only the center panel. In
the right panel, the TBVN distribution imposed by EI yields incorrect, biased estimates.

Of course, the difficulty in a real data-analysis situ-
ation, in which one does not know the true � values, is
that there are so many possible scatters of (�b , �w) pairs
for a given set of tomography lines. In this artificially
simple problem, wherein very few districts each have few
voters, there are about 2 × 1014 different possible joint
distributions of �b and �w arising from the known vote
totals.11 Knowing only the aggregates and their matching
tomography lines, one cannot distinguish between the sit-
uations portrayed in the left, center, and right panels. It is
thus very difficult to glean any information about aggre-
gation bias directly from a tomography plot, except in the
artificial situation wherein the true � values are known.
Furthermore, the contrast between the middle and right
panels (analogs to the left and middle panels of Figure 3)
demonstrates that even very low aggregation bias does not
guarantee that an informative tomography plot will not be
misleading. In both cases, the correlations between both �

parameters and X are less than 0.10 in absolute value, but
only in the center case is the tomography plot correctly
informative. In the right panel, the mean of �b is 0.48, and
the mean of �w is 0.52 notwithstanding the intersection
of lines in the vicinity of (0.7, 0.3). Assuming a TBVN
centered there will, of course, result in faulty estimates.

To get a better sense for the degree to which aggrega-
tion bias foils ecological inference, consider next the re-

11We assume districts are distinguishable. The magnitude of this
number clarifies why it is customary to treat � parameters as con-
tinuous variables and tomography lines as actual lines, not sets of
points. Although actual ecological inference problems are discrete,
there is no danger in studying continuous approximations except
for very small or very highly bounded problems.

sults from a Monte Carlo simulation displayed in Figure 5.
Here, data were constructed to exhibit aggregation bias
but to be consistent with the distributional and spatial
autocorrelation assumptions of the EI model.12 In this
simulation, 250 data sets were generated exactly accord-
ing to the description in King (1997, 161). The data were
drawn from a TBVN having parameters �b = �w = 0.5,
�b = 0.4, �w = 0.1, and � = 0.2.13 The true values, �b =
�w = 0.5, are marked in the plots by a vertical line. For
each simulation, we have drawn a bar centered on the
point estimate for the parameter and model in question,
extending one estimated standard error to each side. The
error bars in Figure 5 clearly indicate that, even accounting
for the standard errors, the estimates are inaccurate.14 The
sense of precision is overstated more by EI than OLS. On
average, EI’s estimates for �b are 25 S.E.s from the true
value, and its estimates of �w are −14.7 S.E.s from the
true value. In the OLS model, meanwhile, �b is 18.8 S.E.s
from the true value while �w is −11.4 S.E.s from the
true value, on average. Obviously, the standard errors are
erroneously estimated and suggest more precision than

12The EI model incorporates three assumptions: the distributional
assumption; the assumption of no spatial autocorrelation; and the
assumption of no aggregation bias. For an extended discussion of
the model assumptions, see King (1997) and Cho (1998).

13The mean correlation between Xb and the parameters in the 250
data sets is 0.69. The minimum correlation obtained via King’s
procedure was 0.21, while the maximum correlation was 0.97.

14There are two instances out of 250 simulations where EI produced
extremely wide error bars that actually reach the true parameter
values. However, these two cases are so anomalous that they seem
likely to be the result of erroneous calculations by the EzI estimation
program.
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FIGURE 5 Consequence of Aggregation Bias

Pictured here are error bar plots from a Monte Carlo simulation with data which are
consistent with the distributional and spatial autocorrelation assumptions but inconsis-
tent with the aggregation bias assumption. The true parameter values are marked by the
long vertical lines. The error bars to the left of the vertical line are for �w . The error bars
to the right of the vertical line are for �b . Both �b and �w have a true parameter value
of 0.5.

actually exists. Hence, even if the data are consistent with
the other assumptions, if the parameters are correlated
with the regressors, neither OLS nor EI will yield accu-
rate results. Neither model is robust against aggregation
bias.

The question of whether we are able to make reason-
able ecological inferences turns on the issue of aggregation
bias (Cho 1998). Though King claims that his method is
“robust” to violations of the aggregation bias assumption,
the evidence strongly suggests otherwise. King’s claim
originates in (and holds only for) an unorthodox defi-
nition of “robustness.” He contends that EI is robust be-
cause it will never produce estimates of the � parameters
which are outside the [0, 1] bounds. But estimates con-
strained to respect bounds need not be close to the truth,
or even within a few standard errors of the actual values.
Indeed, King’s model does not produce unbiased or con-
sistent estimates in the traditional statistical sense of those
words when aggregation bias is present. When regressors
are correlated with parameters, the estimates from EI are
not equal to their respective population parameters, in ex-
pectation, and the discrepancy between the estimates and
the true values does not converge in distribution to zero
as the sample of data points becomes large (Cho 1998).
Moreover, there is also evidence that the estimation of
the standard errors is inaccurate as well. A fundamental
issue for the split-ticket voting analyst, then, is whether
aggregation bias exists in the election-returns data set. If
rates of ticket splitting vary systematically according to

how competitive the district was in the presidential race,
then estimates from the King model (without covariates)
will be untrustworthy.15

Microtheory

There is, no doubt, considerable variation in the pre-
cission of theory informing data analyses in the social
sciences. Works aiming to test exact predictions from
fully specified formal models are surely in the minor-
ity, and purely inductive exercises in which the authors
cast about for relationships among a large number of
variables that merely seem likely to be connected are
not rare. We hesitate to take a strong position on the
strict necessity of strong theory in all instances. How-
ever, in the case of ecological inference, we begin with the
knowledge that aggregation can easily obscure data gen-
erating processes and microlevel mechanisms. Robinson’s

15Violation of the spatial autocorrelation assumption has deleteri-
ous consequences as well. While violations of this assumption do
not cause bias, they do affect the precision of the estimate. For
an extensive discussion, see Anselin and Cho (2002). While Monte
Carlo experiments permit exploration of the unique problems as-
sociated with each possible violation of EI model assumption, in
real-world aggregate data it is typically the case that more than
one assumption is violated (see King 1997, 159). Because there
is not one problem but a whole host of potential problems, it is
difficult to pinpoint the precise difficulty in any aggregate data
analysis.
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seminal work on ecological inference (1950) broached the
highly memorable example of literacy and nonnativity.
Upon discovering that states and regions with more
foreign-born residents are, on average, more literate,
one could infer that immigrants to America tended to
be highly fluent in English. Even a casual acquaintance
with American history, however, would suggest an alter-
native logic: immigrants tended to congregate in areas
whose native-born populations were comparatively edu-
cated and literate. With the aggregate-level finding of a
positive correlation in hand, one could work backwards
to those rival accounts (and others), and not be in a po-
sition to choose one over the other on purely statisti-
cal grounds. With additional aggregated data, one could
test their plausibility. But in the absence of additional
data, it is prior knowledge and the credibility of the ri-
val microlevel accounts that direct us to favor one ac-
count over the other. Our point, then, is less the purist’s
stance that theory must always precede empirical analysis
than the common-sense argument that ecological infer-
ences ought to be accompanied by an explicit microlevel
theory.

To anticipate our arguments about voting, an analy-
sis of ticket-splitting, or of transition probabilities from
an earlier election to a later election, ought to be sen-
sitive to the wealth of knowledge accrued about voting
behavior and candidate strategy. Since it will always be
the case that many alternative microlevel data generat-
ing processes could produce the same pattern of aggre-
gate results, unambiguous ecological inferences are rare
indeed, and strong claims of adjudication between ri-
val models need to be very explicit about microlevel
mechanisms. Furthermore, tests have to be constructed
around the micrologic, with due attention to both (or all)
rivals.

It is rarely ever simple to move from a microtheory
to a macrolevel analysis, or from macro data analysis to
a microlevel inference. Achen and Shively (1995) provide
numerous examples where intuition goes wrong, and they
demonstrate mathematically how relationships vanish or
reverse in the process of aggregation. They describe proper
macrolevel specification as “a subject with no simple re-
lation to microlevel setups where our theories and intu-
itions apply” and assert that “macromodels will in general
confound conventional statistical procedures” (1995, 95).
Clearly, the upshot is that models that provide a good fit to
the aggregate data may not provide an accurate portrayal
of the underlying individual-level behavior. Indeed, this
is the ecological fallacy—that what appears to be the case
among macrounits may be vastly misleading with regard
to the microunits. Explicit attention to microlevel theo-
ries, then, is important and should inform any analysis of

aggregated data precisely because “reverse engineering”
proves so vexing.

Case Study: Split-Ticket
Voting in 1988

We now turn from this more theoretical discussion
about the conditions under which ecological inference
can be reasonable to an application of ecological in-
ference techniques to split-ticket voting. In particular,
we examine Burden and Kimball’s (1998) analysis of
ticket splitting at the Congressional district level. Their
analysis of estimates based on King’s (1997) EI method
leads them to conclude that, contrary to previous find-
ings (e.g., Alesina and Rosenthal 1995; Fiorina 1996),
“voters are not intentionally splitting their tickets to
produce divided government and moderate politics”
(Burden and Kimball 1998, 533). Instead, they claim,
ticket splitting is primarily the result of lopsided con-
gressional campaigns in which well-funded, high-quality
incumbents tend to run against unknown, underfunded
challengers.

Our examination will show that there are two main
reasons to doubt the generality and veracity of their con-
clusions. First, the EI model is not well-suited to these
data. Neither of the previously discussed necessary con-
ditions is met: these data are neither informative nor im-
mune to aggregation bias. Second, their test is not in-
formed by serious consideration of microlevel theories.
There are, as well, a number of less fundamental difficul-
ties with their analysis including an oversimplification of
the full ticket splitting problem, an imperfect data set,16

and use of a buggy EI software program.17

Our tactic is to revisit Burden and Kimball’s analysis,
highlighting the critical decisions at each stage, and focus-
ing on how an ideal treatment of the split-ticket voting
problem would differ. Our primary goal is to demon-
strate that deriving insight into why individuals split their
ballots by examining only aggregate data is far more dif-
ficult than their article implies. Because our main point
is to focus on the extreme difficulty in deriving estimates
of individual behavior using only aggregate data, we do
not provide a revised, competing analysis of district-level
split-ticket voting estimates. Instead, we precisely identify
the major barriers to such an analysis and explicate what

16To maximize consistency, all of the estimates reported in this
article have been obtained using the original Burden-Kimball data
set.

17See the appendix for a brief discussion of this issue.



THE LIMITS OF ECOLOGICAL INFERENCE 161

TABLE 3 The Complete Vermont Presidential-House Vote-Splitting Problem

House of Representatives Vote

P
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de
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A B C D E F G None Total

0 v0A v0B v0C v0D v0E v0F v0G v0n 124331
1 v1A v1B v1C v1D v1E v1F v1G v1n 115775
2 v2A v2B v2C v2D v2E v2F v2G v2n 1000
3 v3A v3B v3C v3D v3E v3F v3G v3n 275
4 v4A v4B v4C v4D v4E v4F v4G v4n 205
5 v5A v5B v5C v5D v5E v5F v5G v5n 189
6 v6A v6B v6C v6D v6E v6F v6G v6n 164
7 v7A v7B v7C v7D v7E v7F v7G v7n 142
8 v8A v8B v8C v8D v8E v8F v8G v8n 113
9 v9A v9B v9C v9D v9E v9F v9G v9n 1134

None vNA vNB vNC vND vNE vNF vNG vNn ?
Total 98937 90026 45330 3110 1455 1070 203 ? ≥243328

Presidential Candidates: 0. Republican (Bush); 1. Democrat (Dukakis); 2. Libertarian (Paul); 3. National Economic Recovery/
Independent (Larouche) 4. New Alliance (Fulani); 5. Populist (Duke); 6. Peace and Freedom (Lewin); 7. Socialist/Liberty Union
(Kenoyer); 8. Socialist Workers (Warren); 9. Scattering; A. Republican (Smith); B. Independent/Socialist (Sanders); C. Democrat (Poirier);
D. Libertarian (Hedbor); E. Liberty Union (Diamondstone); F. Small is Beautiful (Earle); G. Scattering

remains to be done before accurate estimates can be pro-
duced. Accordingly, this article endeavors to delineate the
conditions under which the EI model is an appropriate
analytical tool.

Assessing the Split-Ticket
Voting Data

Conceptualizing the Problem
as a Multi-Stage Estimation

Burden and Kimball do not tackle American voting in
all its complexity, but, rather, examine only two ticket-
splitting scenarios. First, they analyze Presidential and
House votes and then, separately, Presidential and Senate
votes, ignoring House-Senate splits and all other races on
the ballot. Thus, they consider not the very high dimen-
sional problem of all varieties of ticket-splitting on com-
plete ballots, but only two sets of two-way tables. Since EI is
designed for 2 × 2 problems (i.e., it assumes dichotomous
categorical variables), they further simplify the analysis by
discarding all votes not cast for one of the two major par-
ties and by assuming (falsely, as they recognize) that there
are no ballots featuring choices in congressional contests
but not choices in the presidential contest.18 They thereby

18The two-party House vote exceeded the two-party presidential
vote in 44 districts in 1988.

reduce the size of the table describing each House district
to 2 × 3. Table 3 shows the full House-President case for
Vermont, with each table entry, vij , representing a count
of votes cast for presidential candidate i and House can-
didate j. Table 4 shows the simplified version analyzed in
two steps by Burden and Kimball.19

In Table 1, we assumed a simple problem in which all
voters had made choices for both Representative and Pres-
ident. Table 4, by contrast, acknowledges abstention from
U.S. House voting. Burden and Kimball’s Table A–1 is a
general form of our Table 4 (except that it transforms the
vote frequencies into row proportions). To submit data in
this form to EI, Burden and Kimball summed across the
first two columns to create another 2×2, with House-Vote
and No-House-Vote for columns, and then estimated the
Democratic and Republican presidential vote shares for
only those voters who did not abstain in the House elec-
tion. Treating these estimated quantities as known then

19Clearly, in the case of Vermont eliminating nonmajor-party
House candidates distorts the result, since the Independent can-
didate garnered a full 37% of the vote while the Democratic can-
didate finished a distant third. Vermont is quite unusual in this
regard, as significant candidates running for neither major party
are rare in recent American elections. In fact, Burden and Kimball
inadvertently juxtaposed the Independent and the Democrat in the
Vermont case, so Table 4 does not describe an observation in their
analysis. There are 435 House districts, but Seven Louisiana dis-
tricts had no contests in November 1988, nine other races were
uncontested and produced no vote count, and 65 more were miss-
ing a candidate from one of the major parties. Of the 354 remaining
districts, 154 saw some votes won by nonmajor-party candidates.
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TABLE 4 A 2 × 3 Simplification of the Vermont Presidential-House
Vote-Splitting Problem

House of Representatives Vote

Presidential Vote Choice Republican Democrat “None” Total

Bush (R) vRR vRD vRn 124331
Dukakis (D) vDR vDD vDn 115775

Number of Voters 98937 45330 95839 240106

reduces the 2 × 3 problem to a 2 × 2 table where the cell
entries are now the quantities of interest, rates of straight
and split-ticket voting.

Burden and Kimball’s analysis of split-ticket voting
in 1988 thus proceeded through multiple stages: (1) they
estimated abstention (with EI); (2) they estimated ticket-
splitting rates, conditional on the abstention estimates
(again with EI); and, (3) they modeled these district-level
estimates of split-ticket voting as a function of candidate,
institutional, and constituency traits (with OLS). Spec-
ification issues arise at every stage of the analysis, and,
naturally, the accuracy and validity of each stage depend
strongly on the accuracy and validity of the preceding
stages. Since the errors from each of the stages compound,
the final results are highly prone to indeterminacy. Burden
and Kimball make no attempt to incorporate uncertainty
from any previous stage of their analysis into the proceed-
ing stages. Instead, at each estimation stage, they begin
with a “clean slate,” assuming that estimation from previ-
ous stages is without error. Even if the estimation at each
stage were valid, their multistage estimation procedure
poses serious problems.20

Each stage of their estimation beginning with the
conceptualization of the problem, however, has difficul-
ties. We do not examine the last stage of their estima-
tion closely, but note that Herron and Shotts (2003, 2004)
and McCue (2001) have scrutinized the validity of using
point estimates generated by EI as dependent variables
in a second-stage linear regression, the exact process by
which Burden and Kimball arrived at their final estima-
tion. The analysis by Herron and Shotts shows that this
process may yield inconsistent and attenuated estimates,

20How to model the uncertainty as it propagates, across stages, is
a critical, but difficult issue. It is not even clear what statistical
literature to search for help, since the existence of multiple stages
here is motivated not by theory, but by practical computational
concerns. One option might be some form of bootstrapping. In the
problem at hand, problems with EI’s district-level point estimates
and their inappropriateness as dependent variables in OLS models
overshadow the knotty problem of modelling the compiling of well-
behaved uncertainty.

but worse, these estimates may suffer from sign rever-
sal and augmentation bias. Clearly, these problems seri-
ously affect the ability to make valid or accurate inferences.
Remarkably, Herron and Shotts arrived at these conclu-
sions while assuming that all of the assumptions of EI
hold.

We heed the admonitions of this analysis, but focus
on the earlier stages of the Burden and Kimball analysis.
Indeed, even if the final stage of their analysis were valid,
the preceding stages cast overwhelming doubt in and of
themselves. Every stage of their analysis is plagued with
problems. For conciseness, hereafter, we focus primarily
on their stage-two analysis, wherein they produce esti-
mates of district-level split-ticket voting rates. Although
the first-stage analysis is less substantively interesting, the
problems with EI at the second stage clearly apply to the
first-stage analysis as well.

Given the complexity of the American ballot, a full
analysis of ticket-splitting is a huge job. For the sake of
tractability, Burden and Kimball make some small sim-
plifications (disregarding minor party candidates), some
bigger simplifications (disregarding abstention from the
presidential contest), some substantial simplifications
(examining only two contests at a time), and a very strong
and unambiguously incorrect assumption that estima-
tion errors produced at each stage of their analysis could
be safely ignored thereafter. While these choices made the
problem manageable, they also greatly limit the applica-
bility and validity of the eventual substantive conclusions
about who splits tickets and why.

Bearing these limitations in mind, do the data on
congressional and presidential voting in 1988 nonethe-
less reveal interesting or novel information about ticket
splitting? Following King’s own advice, one should begin
an ecological inference analysis by assessing how much
information is deterministically available in the aggregate
data (King 1997, 277–91). Although the authors do not
report any diagnostics on the data, and despite the inher-
ent indeterminacy previously discussed, it is a useful first
step of analysis, to which we now turn our attention.
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FIGURE 6 Tomography Plot for
Burden-Kimball House
Vote-Splitting Data

This tomography plot is very dense and uninforma-
tive, far more similar to the plot in Figure 2 than to
the plot in Figure 1.

Assessing Initial Diagnostics

Consider Figure 6, which displays a tomography plot from
the second stage of Burden and Kimball’s analysis of the
House data set. Recall that for this stage of their analy-
sis, �b and �w represent proportion of the Dukakis vote
and proportion of the Bush vote (respectively) cast for
the Democratic House candidate. This plot resembles the
one in Figure 2 in that both are very uninformative. (In
fact, the lines in Figure 2 are a random draw of the lines in
Figure 6.) The only difference, then, is that the Burden-
Kimball tomography plot has more seemingly unrelated
lines than the uninformative tomography plot in Figure 2.
Again, the bounds are too wide to imply any sort of sub-
stantive conclusion. The bounds on �b are [0.28, 0.91].
The bounds on �w are [0.24, 0.75]. Even in this initial
stage of assessing the information inherent in the data,
it would appear that this split-ticket voting data set does
not contain much information about the parameters of
interest: the bounds are not much narrower than [0, 1],
and no general area of intersection is evident. Hence, any
inferences made from these data are not likely to be very
reliable (King 1997, 185). If the standard errors indicate
otherwise, they are likely incorrectly computed.21 For the

21Burden and Kimball puzzlingly state, “Because these are maxi-
mum likelihood estimates, King’s method also produces standard
errors for the two ticket-splitting parameters for each congres-
sional district. In this case it yields fairly precise estimates of ticket-

Burden and Kimball data then, there is no reason to ex-
pect that EI estimates will be reliable. Even if the truncated
bivariate normal distribution is a good approximation of
the underlying data-generating process, the high variance
that characterizes the parameters is likely to render their
analysis substantively uninteresting.

Note that we have not yet begun to estimate the pa-
rameters of interest. At this initial stage, we are merely
assessing how much information is available for the EI
estimation procedure. Our initial analyses do not por-
tend success in making correct individual-level inferences
based on these aggregate data: the bounds are not infor-
mative and no mode is apparent. In some very special
situations, when aggregation bias is absent, the method
of bounds is truly uninformative yet we are still able to
make correct inferences to the individual-level data. So
we turn now to the problem of aggregation bias.

Aggregation Bias and Covariate Selection

Assessing the degree to which aggregation bias exists is a
daunting task, one that is replete with uncertainty. There
are, however, some methods that shed some insight into
this problem. One method is to examine the aggregation
bias diagnostic plot suggested by King (1997, 238). This
plot for the data that Burden and Kimball use in their
second stage analysis is shown in Figure 7. Aggregation
bias exists if there is a relationship between X and �b

or �w, where, again, X is the proportion of voters who
voted for Dukakis. Since �b and �w are unknown, we
are able to plot only the bounds for these two parame-
ters.22 We can see from the figure that the vast majority
of the bounds cover the entire permissible range from 0
to 1. In addition, the first plot suggests that the aggrega-
tion bias for �b may be severe, since �b and X appear to
be strongly correlated. In other words, there is some ev-
idence that rates of straight-ticket Democratic voting in-
crease with the proportion of the presidential vote won by
Dukakis.

A second method for testing whether aggregation bias
exists is simply to run the OLS model. If no aggregation

splitting” (1998, 536) They base their assessment of precision on the
small standard errors. Again, though, this claim overlooks the fact
that their analysis is multistage, and so the errors are compounded.
Moreover, it is unclear how much faith can be placed on standard
errors when the number of parameters grows with the number of
observations (Neyman and Scott 1948). King (1997) does not rig-
orously analyze the statistical properties of his estimator and so
provides no guidance.

22And, in this instance, these are not genuine bounds because they
incorporate the error from a previous stage of the analysis.
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FIGURE 7 Aggregation Bias Diagnostic

Aggregation bias exists if X and � are correlated. The only deterministic information avail-
able for � is contained in the bounds. Each line in these plots indicates the range on the
bounds for a district. These bounds are generally wide. To the extent that there is any pattern,
it indicates a correlation between X and �.

bias exists, the assumptions of OLS are met, and so OLS
will yield consistent and unbiased estimates. The OLS
model for the Burden and Kimball data yields

T = 0.0331 + 1.075X, (3)

where X is the proportion of voters who voted for Dukakis,
and T is the proportion of the House vote that went to
the Democratic candidate. Clearly, OLS does not yield the
correct solution. The model predicts Democratic House
candidates’ vote shares of 3.3% and 110.8% for districts
giving 0% and 100% of their vote to Dukakis, respec-
tively. Equivalently, it estimates that 3.3% of Bush vot-
ers supported Democratic House candidates and that
−10.8% of Dukakis voters supported Republican House
candidates. This latter estimate, being logically impos-
sible, alerts us that the assumptions of OLS are vio-
lated by these data. Producing out-of-bounds estimates
is thus a very useful feature of the linear probability
model. While out-of-bounds estimates are clear signals
of a misspecified model, the converse of this statement
is false: estimates which are within the bounds do not
signify a correctly specified model. And since EI always
produces parameter estimates which are within the [0,
1] bounds, it has no such diagnostic value for assessing
whether the specification and/or model assumptions are
correct.

Since OLS produces correct estimates if no aggrega-
tion bias exists in the data set, one can conclude from
equation (3) that there is a high probability of aggrega-

tion bias in the data set.23 Given that EI is not robust to
violations of the aggregation bias assumption, and we now
have a prior that aggregation bias exists in the data set, the
EI estimates are immediately suspect. It is possible that EI
will provide reasonable estimates despite the presence of
aggregation bias. However, this result would be the ex-
ception, not the rule, since EI is a biased and inconsistent
estimator in the presence of aggregation bias (Cho 1998;
King 1997). The exception might occur when the bounds
are informative. Nonetheless, it is clear from Figure 6 that
the bounds are far from informative in this 1988 election
data set—the vast majority of the bounds span the entire
range of possibilities.

One method for mitigating the effects of aggrega-
tion bias is to include covariates in the model (King 1997,
288). If these covariates control aggregation bias by ac-
counting for the correlation between the parameters and
the regressors, then the model will produce the correct
estimates. Burden and Kimball included one covariate in
their second-stage model specification, a dummy vari-
able that indicates whether or not a district is located in
the South. They included this variable in the belief that
individuals who live in the South are unlike individuals
who do not live in the South when it comes to decisions

23Checking the results from Goodman’s regression line is a diag-
nostic suggested by King: “If Goodman’s regression line does not
cross both the left and the right vertical axes within the [0, 1] inter-
val, there is a high probability of aggregation bias. If the line does
cross both axes within the interval, we have less evidence of whether
aggregation bias exists” (King 1997, 282).
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about ticket splitting. They offered no indirect evidence
(e.g., survey data) to support this contention. Regardless
of whether their intuitions about the South are correct or
not, including this covariate does not affect the estimates.
Their justification for its inclusion was “to account for
possible aggregation bias and to improve the estimates”
(1998, 536). However, since the two models produce in-
distinguishable estimates, there is no reason to believe
that a South dummy has any desirable effect in mitigating
the aggregation bias. If the specification with no covari-
ates is ill-advised, so too is the specification with only the
variable “South.”

Burden and Kimball were correct that there is a need
to alleviate the aggregation bias in their data set and
that incorporating the correct covariates would achieve
this end. The problem they encountered is that EI does
not provide a test for whether one specification is bet-
ter than another specification. EI users thus find them-
selves in a truly problematic situation: they cannot de-
termine which specification is correct, but different spec-
ifications can produce very different and irreconcilable
results. Indeed, in this way, making ecological inferences
is no different than more traditional estimation where
we have long known that model specification has impor-
tant consequences for inference. The ecological inference
context takes the challenges inherent in any statistical es-
timation and compounds it with the problems posed by
aggregation.

Consider Table 5, which shows the results from dif-
ferent model specifications (the covariates are from the
set Burden and Kimball use in their (third-stage) OLS
analysis of their EI-estimated split-ticket voting levels).
Most of these covariates are associated with some prior
theory or result about ticket splitting. Since these are dis-
trict and candidate attributes, not aggregates of individ-
ual voter traits, they are entering the model at the “right”
level. (In the next section, we discuss the most important
independent variable in Burden and Kimball’s analysis,
which is, by contrast, partly an aggregate of individual
traits and, thus, subject to distortion by aggregation.) But
which ones belong in the model? Burden and Kimball
incorporated all of them except the South dummy as in-
dependent variables in their OLS stage rather than the
EI stages not for any theoretical reason, but because EI
treats covariates as incidental, and produces no coefficient
estimates for them. Of course, the EI model lacking co-
variates and the OLS follow-up are mutually inconsistent.
And “putting off” adding covariates until the OLS stage
does not ameliorate the serious problem of aggregation
bias in the aggregate analysis. Is there any reason to be-
lieve that any of these covariates alleviate the aggregation
bias?

TABLE 5 The Effect of Different Covariates

Bush Dukakis
Splitters Splitters

No Covariates 0.3306 0.1982
(0.0058) (0.0074)

South∗ 0.3310 0.1980
(0.0060) (0.0070)

NOMINATE Scorebw 0.4376 0.3477
(0.0986) (0.1075)

NOMINATE Scorew 0.4088 0.2977
(0.0146) (0.0180)

Experienced Challenger 0.3602 0.2508
and Money (0.0421) (0.0488)

Experienced Challenger 0.3303 0.2085
(0.0601) (0.0719)

Democratic Incumbentb 0.3113 0.1749
Republican Incumbentw (0.0115) (0.0143)
Ballotbw 0.3269 0.1988

(0.0068) (0.0084)
NOMINATE Scoreb EI could not estimate
Experienced Challenger, EI could not estimate

Democratic and
Republican Incumbent

A superscriptb indicates the covariate was used for �b.
A superscriptw indicates the covariate was used for �w .
∗Burden and Kimball’s specification.

Standard errors in parentheses

To begin with, in these different specifications, the
estimated percentages of ticket splitters vary widely. The
values for the standard errors are large for some specifica-
tions and extremely small for other specifications. This er-
ratic performance is illustrated in Figure 8. Each rectangle
is centered at the point estimate and extends one standard
error in each direction. The rectangles would overlap if
the models were consistent, but they do not. Even after ac-
counting for the standard error, few of the point estimates
are in agreement. Substantively, this is a problem because
the alternative specifications imply different types of
voting behavior. In addition, the computer program, cit-
ing various errors, was not able to compute estimates for
certain other specifications. To settle on the best available
model of the split-ticket vote, one must somehow choose
from among these different specifications. Finding a
proper specification is always a major step, but in the
aggregate-data context, there are enormous barriers (see
Achen and Shively 1995, ch. 4, for an extensive discussion;
see also Erbring 1990, 264–65, and Haitovsky 1973).

The advice that King offers is that one should include
covariates that can “be justified with specific reference
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FIGURE 8 The Effect of Different
Covariates
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Each rectangle represents the results of a particular
specification of the EI model. The rectangles are cen-
tered on the point estimate and are one standard error
wide and high. If the separate estimates were consistent
with one another, the rectangles would all overlap.

to prior substantive knowledge about a problem” (King
1997, 173). He provides no empirical test for choosing co-
variates, but only this admonition to exercise one’s belief
about what may be true. This would be unproblematic if
different researchers always reached common substantive
conclusions after imposing their own beliefs on the model
specification. As this congruence virtually never occurs,
however, it is obvious that a formal method is needed
to determine which covariates are likely to belong in a
properly specified model. After all, “including the wrong
variables does not help with aggregation bias” (King 1997,
173).

Although the problem of identifying proper covari-
ates with formal tests is not solved, and may not even
admit a “solution” in the sense of a universally optimal
test, there are some starts on this problem. For instance,
Tam (1997) notes that the statistical literature on change-
points and parameter constancy addresses an analogous
problem and so is very promising as a source for guidance
on how to pick covariates in the aggregate data context.
The reason to introduce covariates, after all, is because
the parameters of interest are not constant throughout
the data set. Hence, a useful empirical test should dis-
criminate between covariates that do divide the sample
into subgroups in which parameters are nearly constant
and those that do not (Cho 2001). In terms of the TBVN
distribution that the EI model incorporates, adding co-
variates into the model would condition the parameters

and allow much more flexibility. We may be interested in
testing, for instance, whether people who split their tick-
ets are distinguishable by education level from those who
vote straight tickets. If so, we should not necessarily try
to fit a TBVN distribution with a single mode and set of
variance parameters.

In a general changepoint problem, a random pro-
cess generates independent observations indexed by some
nonrandom factor, often, but not exclusively, time. One
may wish to test whether a change occurred in the random
process by searching over partitions that divide the data
into subsets appearing to have different distribution func-
tions. Again, the subsets can be sorted chronologically, or
can be generated from an ordering of some other mea-
sured property. The literature is large and diverse: some
tests assume that the number of changepoints is unknown,
while others assume a fixed number of changepoints;
some fix the variance of the distribution, while others
estimate the variance as a parameter; some assume that
the different distributions take similar forms, while others
allow more flexibility in this regard. Tests vary in nature as
well: some are Bayesian (e.g., Carlin, Gelfand, and Smith
1992; Schulze 1982; Smith 1975), some are parametric
(e.g., Andrews, Lee, and Ploberger 1996; Ritov 1990),
some are nonparametric (e.g., Carlstein 1986; Wolfe and
Schechtman 1984), and some are related to time series
analysis (e.g.; Brown, Durbin, and Evans 1975). In short,
there are diverse means by which one can draw inferences
about changepoints and constancy, or lack thereof, of pa-
rameters. For present purposes, what is important is that
the general object in this literature is to find a means for
partitioning data sets into subsets within which there is
some degree of parameter constancy. Since this is pre-
cisely the goal for the researcher choosing covariates in an
ecological inference problem, the application of change-
point tests to aggregate data problems seems extremely
promising.

Cho (2001) introduces one formal covariate-
selection test adapted from time-series analogs. There is
not likely to be one covariate-selection test that is opti-
mal for all aggregate data problems, but employing an
empirical test is clearly preferable to imposing subjective
beliefs. It is important that aggregate data analysts have
some standard by which to judge whether one specifica-
tion is superior to another. Further development of well-
specified statistical tests for covariate selection should be
the priority for aggregate data research.

Burden and Kimball were in need of just such a test,
since their data exhibited aggregation bias. Lacking any
means by which to compare covariates that might allevi-
ate the problem, they settled on one covariate chosen on
qualitative grounds. Unfortunately, this covariate did not
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perform the necessary function of removing aggregation
bias, and their analysis suffered accordingly.

Microtheory: Intention
and Ticket Splitting

Burden and Kimball contend that their research makes
two distinct contributions to the study of ticket splitting.
First, as pioneers in applying King’s EI methods, they pur-
port to provide the first accurate estimates of the extent
of ticket splitting. Second, their analysis of splitting (as
estimated by EI) reveals that it is primarily an uninten-
tional rather than intentional activity. Americans simul-
taneously support different parties at a given moment
not because they prefer to see power balanced or shared,
but because strategic choices by candidates and parties
induce splitting. We have already demonstrated that the
first of these innovations is more apparent than real—EI
certainly does not produce new levels of accuracy in esti-
mating ticket-splitting behavior. Their data were neither
informative nor immune to aggregation bias. We now
discuss the second main reason to doubt the generality
and veracity of their conclusions, namely that their test
was not informed by serious consideration of microlevel
theories.

The term “intentional” could be ambiguous in this
context, but the authors clarify that their interest lies in
assigning primary responsibility for ticket-splitting to ei-
ther candidates or voters (Burden and Kimball 1998, 533).
If levels of tickets-splitting seem to respond to candidate
traits such as incumbency, spending differentials, or can-
didate experience, they propose, it is not the case that the
masses deliberately divide their support between parties.
Thus, they conclude, the candidates, not the voters, move
first. It is, of course, already very well known that con-
temporary American elections feature a substantial in-
cumbency advantage. To verify that some ticket splitting
seems to originate in incumbents’ skills at drawing cross-
party support, however, is not to rule out that voters are
quite consciously spreading support across parties or ide-
ologies. Burden and Kimball did not test whether incum-
bents are helped or hindered in drawing nonparty-based
support by the expected fates of their parties’ presidential
candidates. In that respect, they do not give “intentional”
ticket-splitting much chance to surface.

The critical result for their claims about balancing
and intent, ultimately, is an insignificant coefficient on
the variable they label “ideological distance.” They oper-
ationalize this variable as the mean distance on a seven-
point ideology scale between Bush (Rp) and the Demo-

cratic Senate candidate (Ds), as assigned by a state’s Senate
Election Study (SES) respondents. There are some prob-
lems with this construction. Aggregation to state means
is noisy: in most states, standard deviations of Rp and
Ds span about a quarter of the entire interval. More
importantly, the idea that greater spread between these
two candidates might yield more ticket splitting relies
on some strong, unstated assumptions about intraparty
homogeneity, voter distributions, and the origin of vote
splitting.

Figure 9A illustrates the logic whereby spatial
party differentials might lead to vote splitting. If both
Democrats (e.g., Ds and Dp, where s and p denote “sen-
ate” and “presidential” candidates) are located at D, both
Republicans at R, and if expected policy outcomes for
unified government are, thus, D and R, but for divided
government are some weighted average of D and R, say M ,
then standard proximity theory identifies cutpoints defin-
ing zones in which voters should prefer to vote straight
tickets (DD or RR) or split tickets (DR or RD). Then, as
|Ds − Rp| grows, the central region containing split-ticket
voters grows. Burden and Kimball’s “ideological distance”
variable is thus constructed on three assumptions: first,
that voters react to expected policy outcomes, not can-
didates per se; second, that the two Democrats and two
Republicans in question are ideologically very similar, if
not identical; and, third, that a substantial portion of the
electorate resides in the center of the ideological spectrum,
so that enlargement of the middle region does result in
more split-ticket voting occurring.

Note, then, that the logic of their test fails if voters do
not perceive the two Republicans and two Democrats to
be ideological twins or if the district’s electorate is bipo-
lar. On the first point, consider Figure 9B, and suppose
that Connecticut has a symmetrical (e.g., uniform) voter
distribution. As Rp moves right, |Ds − Rp| increases. Un-
der the same assumptions about voting as just applied
to Figure 9A, though, the amount of split ticket voting
should decrease with this increase in |Ds − Rp|, since the
ticket splitters are now those in the outer regions, given
this particular arrangement of candidates. This is the ex-
act opposite effect from that shown by Figure 9A and as-
sumed to apply everywhere by Burden and Kimball. And,
although they point out in their footnote 11 (1998, 539)
that the SES set uniquely provides the necessary data to
test a balancing thesis since it includes placements of re-
spondents and all four candidates on a common scale, only
half of this information is actually incorporated in their
construction of “ideological distance.” Either large ide-
ological variation between different party nominees or a
noncentrally distributed electorate thwarts interpretation
of their regression results.
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FIGURE 9 Alternative Spatial Theories of Split-Ticket Voting
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Predicted and actual votes cast are circled in part B. For these two respondents, actual
votes are identical to votes as predicted by expected-policy and candidate-proximity
theories.

There is, moreover, a plausible variety of intentional
vote splitting not captured by their logic. Voters who select
candidates only according to ideological proximity, with-
out making projections about policy outcomes that will
result from the various permutations of candidate victo-
ries, can intentionally split tickets if they perceive there to
be large differences in the positions of candidates from
the same party. Figure 9B shows two actual SES respon-
dents (marked with asterisks) whose split-ticket votes ex-
actly match the predictions of simple candidate-proximity
theory. Note that |Ds − Rp| is identical in the two cases,
even though one is a vote of RpDs and the other a vote
of DpRs. For both of these respondents, in fact, reported
votes are consistent with either expected-policy voting or
candidate-proximity voting. This observational equiva-
lence also undercuts strong claims about voter intentions.

More generally, spatial theories of voting are many
and varied, and even if one posits that voters choose ac-
cording to policy outcomes, the proper econometric spec-
ification to test for “intent” will depend critically on the
underlying formal model. Merrill and Grofman’s recent

work (1999) unifying directional and proximity models is
one excellent blueprint in this regard, since they carefully
construct a hybrid model in which both rivals are nested,
and allow data to adjudicate between them, or to select a
mixture.

Even more pertinent to the issue at hand are two re-
cent articles about how American voters do or do not link
their votes in search of moderate policy. In his analysis
of individual-level voting data from the NES, Mebane
reaches a conclusion very different from Burden and
Kimball, that “policy-related balancing has often been an
important determinant of election outcomes.” (2000, 51)
Mebane and Sekhon (2002) extend the logic of that article
to midterm voting and find further evidence for not only
moderation, but coordination. In both cases, a virtue in
these articles is that coordinating and noncoordinating
models are estimated in tandem, so that competing mod-
els can be compared formally. In each case, coordination
and moderating are formally and explicitly defined and
distinguished from related phenomena such as economic
retrospective voting and incumbency advantage. Mebane
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notes that the model does not achieve great success at
identifying ticket-splitters (2000, note 26, 51), and this
work is not necessarily the last word on the topic. But
the care with which the terms of the theoretical model
are operationalized is exemplary, and the conclusions are
appropriately qualified, particularly concerning underly-
ing assumptions about the effects of institutional context,
and how these relate to unrealistic assumptions about
voter-level mechanisms. Burden and Kimball’s analysis,
by contrast, is not nearly flexible or general enough to
support their strong conclusion that voters do not con-
sciously choose to split tickets.

Conclusion

Our hope is that our discussion of ecological inference and
its inherent uncertainty highlights the numerous reasons
why a researcher must exercise great caution when analyz-
ing aggregate data. With EI, in particular, the purported
advances are coupled with much greater computational
complexity and a large number of new assumptions. Since
EI generally does not outperform OLS (Cho 1998), it is
difficult to justify the additional overhead. EI does supply
district-level estimates, but these estimates do not possess
desirable statistical properties (Herron and Shotts 2003,
2004). There are instances when one needs to make eco-
logical inferences, and so one will choose to use an eco-
logical inference model such as EI. In these cases, the re-
searcher must be fully aware of the numerous pitfalls that
may ensue.

For example, Burden and Kimball claim as their prin-
cipal achievement to have developed the first-ever ac-
curate district-level estimates of vote-splitting. However,
their faith in the multi-stage aggregate data analysis is
misplaced, and there are a multitude of reasons to doubt
the accuracy of their findings. Furthermore, their search
for “intention” in vote-splitting is more accurately a test
for a particular kind of balancing behavior, under key as-
sumptions about ideological homogeneity within parties
and distributions of district electorates. That analysis is
not general enough to support strong conclusions about
voting behavior. It is unreasonable to declare new-found
knowledge when the novel findings depend critically on
very strong and unverifiable assumptions about the un-
derlying individual-level data. Split-ticket voting behav-
ior remains a fascinating topic, and it also remains a topic
plagued by severe data-analysis barriers.

Caution can never be thrown to the wind when an
analysis proceeds through multiple stages of analysis, es-
pecially when multiple stages of ecological inference are
involved. Ultimately, there is no escaping indeterminacy

in cross-level inference. The problem is ill-posed and so
not amenable to unique “solutions” as such. Here we have
emphasized that those who must proceed with ecological
inference just the same ought to know their data well;
be aware that even ostensibly informative data can be
misleading; be on guard against aggregation bias, and
endeavor to model it when it occurs; and be as explicit
as possible about the logic connecting the micro- and
macrolevels. But a final caveat is that one can still go astray
even having exercised care in all of these manners. Hence,
except in highly unusual circumstances, aggregate data
analysis intended to yield insight into micro behavior al-
ways calls for cautious and guarded interpretation.

Appendix
Software Issues

Although we did not discuss computer programming and
model implementation here, we note that the question of
whether King’s software reliably implements his statisti-
cal model has been raised by others, in passing (Freedman
et al. 1998, 1520; 1999, 356) and in great detail (Altman
and McDonald 2001). The Freedman et al. review of King’s
book notes that their independent coding of the EI model
yielded different results from those output by King’s soft-
ware. Altman and McDonald conclude that the changes
between different versions of the software “can produce
differences in estimates large enough to affect the sub-
stantive conclusions made on the basis of an EI analysis”
(2001, 1). In addition, King has revised the program many
times and has identified numerous changes and bug fixes
in the “What’s New?” documentation that accompanies
the software. Burden and Kimball obtained their results
using version 1.21 of EzI , one of the earliest versions of
the program, that predates many bug fixes.

For instance, the “What’s New” documentation
notes: “9/15/96 fixed a small buglet for unanimous
precincts”and “9/25/96 fixed a bug that affected homoge-
nous precincts rarely.” (These fixes appear to have been
made in response to a paper by Rivers and Tam (1996) that
identified a mistake in his derivation of the likelihood.)
King later realized that his program produced significant
differences according to whether it was run on a Windows
machine or a Unix machine (“1/13/97 Unified DOS/Unix
version to cover differences in Gauss across platforms”).
Despite all these updates, Altman and McDonald report
that there are still differences in its operation across plat-
forms (2001, 11). In short, King has made (and continues
to make) many corrections and changes to his software,
but it is not clear how those bugs he has fixed might have
affected previous results. Some of these bug fixes involve
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procedures that Burden and Kimball employed, such as
EI2 (“3/31/98 Fixed bug in EI2”). Moreover, there is an
ongoing debate about the reliability of the GAUSS pro-
gramming language on which King’s program depends.
Inaccuracies can appear when performing basic statisti-
cal computations such as linear and nonlinear regressions,
simulations, and t-values with GAUSS. In some evalua-
tions, the number of accurate digits produced by GAUSS is
zero (McCullough and Vinod 1999; Vinod 2000). Hence,
users of EzI may be subject to multiple layers of pro-
gramming errors. While virtually all data analysis relies
on software, and thus potentially inherits problems of
implementation, the cause for concern is clearly greater
with EzI .
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