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ABSTRACT ARTICLE HISTORY
The underlying statistical concept that animates empirical strategies Received 26 March 2016
for extracting causal inferences from observational data is that obser- Accepted 3 November 2016

vational data may be adjusted to resemble data that might have KEYWORDS
originated from a randomized experiment. This idea has driven the Causal inference;
literature on matching methods. We explore an un-mined idea for optimization; subset
making causal inferences with observational data - that any given selection; computational
observational study may contain a large number of indistinguishably methods; operations
balanced matched designs. We demonstrate how the absence of a research

unique best solution presents an opportunity for greater information

retrieval in causal inference analysis based on the principle that many

solutions teach us more about a given scientific hypothesis than a

single study and improves our discernment with observational stud-

ies. Theimplementation can be achieved by integrating the statistical

theories and models within a computational optimization framework

that embodies the statistical foundations and reasoning.

1. Many experiments within an observational study

The core literature on making causal inferences from observational data rests upon the
expectancy and possibility that experiments hide within observational data. When ran-
domization in an experiment is successful, the treatment effect is isolated from potential
confounders. Differences in response can then be interpreted as a treatment effect [13].
The hope for observational studies is that if one can organize or weight the observations
in an observational study such that their configuration resembles data from a randomized
experiment, then one may be able to make the leap from associational inferences to causal
inferences [20]. This line of reasoning has animated much of the work on the statistical
adjustment of observational data.

A number of methods for seeking the latent experiment in observational data have been
proposed [9,19,29]. These methods are not identical in implementation or outcome, but
they share a common goal - to identify the observational design that is ‘closest to the exper-
iment’. They also share a common process that first defines a distance metric for assessing
how ‘close’ two observations are to one another and then collects units into homogeneous
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sets or pairs. These approaches emulate the latent block- or pair-randomized experimental
framework and provide a single matched solution. !

The ‘one solution” from these observational studies is akin to running ‘one experiment’.
Certainly, conducting just one experiment is common since experiments are often costly,
with respect to both time and resources. If time and resource limitations are lifted, it is
easy to see how one would have more confidence in a particular finding if it were repli-
cated across many experiments. The treatment effect, after all, is a random variable. One
experiment provides simply one realization of that random variable. For both experiments
and observational studies, it would be helpful if we could interpret them in context - as
one experimental realization among a host of possible experimental realizations. While
we can all agree on this ideal, it is unclear how we can interpret experiments in context
until many experiments have been conducted. Perhaps unsurprisingly, then, methods for
making causal inferences from observational data seem to also hold tightly to the one
experiment framework.

Our analysis takes a different turn with a focus on a research design that exploits the
ability to create a large number of independent ‘as-if-randomized’ designs. We show how
a single observational study can potentially provide many matched subsets and thus more
information that is useful for interpreting treatment effect estimates. Our method is not
a panacea for the overarching issues that plague inferring causality from observational
data, namely the selection on observables assumption. The current implementation of the
algorithm can also be improved, especially with respect to the generation of more inde-
pendent designs. However, we offer a novel perspective and method that utilizes more
information, and as a result, offers a way forward for incorporating additional information
for causal inferences models.

2. Expanding beyond the one experiment framework

Partly because a single experiment requires significant time and resources, we tend to view
the outcome of any single experiment in the best light possible — as an unbiased estimate
of the true effect. We leave it to subsequent scholars to advance science by validating our
findings under similar conditions. That is, even though the p-value for the treatment effect
in a randomized experiment might be based on the thought experiment of repeating the
random assignment, the idea as articulated by Fisher [8] is that one can advance science
only through an accumulation of evidence from different yet complementary studies. Prac-
tical matters tend to lead researchers toward under-emphasizing repetition as part of the
scientific enterprise, while also over-emphasizing the benefits of randomized assignment
in a single study. We know, however, that estimates may differ across different models and
analyses even when the data remain constant.

2.1. The variation embodied within many experiments

A randomized experiment can be repeated. If it were repeated, the next randomization
process would yield empirically different units and a potentially different estimate of the
treatment effect, highlighting that treatment effect is a random variable. That variation is
embodied within the many potential experiments is plain - it is induced by the random-
ization process itself. Consider a simulation of 1000 randomized experiments, using data
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from the Current Population Study (CPS). We randomly draw 370 individuals from the
data set, and then subsequently randomly place each in the treatment or control group.
The chosen group size mimics the LaLonde NSW experiment [15]. Our outcome variable
is real earnings in 1978 (RE78). We do not treat these chosen units in any sense. That is,
there is no treatment effect because there is no treatment. So, the true difference in the
outcome variable, RE78, between the treatment and control groups in our simulations is
zero, in expectation.

The distribution of the estimated average treatment effects across our 1000 experiments
is shown in Figure 1. For the CPS data, the mean of this distribution is approximately $6.90,
which is very close, and given variability in the simulation, essentially identical to the true
treatment effect of zero. The range of the treatment effect, however, is quite large (—$3470,
$3042), despite the truly randomized experiment, reflecting the noisy nature of the out-
come variable. The randomized experiment provides us with an unbiased estimate, but the
noisy outcome variable ensured that we also have a large variance estimate of the average
treatment effect.

When the estimated treatment effect is far from the true treatment effect, the standard
error is not large enough to ensure that the result will be correctly identified as statistically
insignificant. In our simulation, the SE remained in a fairly small range (942.1, 1075.0),
essentially conveying the same uncertainty for the associated estimate, which is assumed
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Figure 1. Average treatment effect across 1000 simulated experiments.



4 W.K.T.CHO

to be correct. When one calculates the SE, that calculation includes the sample size and
an estimate of the population SD but does not incorporate information about how far the
estimated treatment effect might be from the unknown true treatment effect. Indeed, the
SD of the sampling distribution is 1037.68, so the various SE estimates are quite good,
generally.

2.2. Therelationship between balance and the ATE

For each of our single simulated experiments, we expect randomization to result in bal-
anced treatment and control covariate distributions that are roughly equivalent. Figure 2
provides an illustration of the balance achieved across our 1000 simulated experiments.
In the plot on the left, balance, b, is a summary measure of balance across the eight
covariates. In particular, it is the sum of theKolmogorov-Smirnov statistic (comparing
the treatment and control covariate distributions), the absolute value of the t-test for the
difference in means, and absolute value of the difference between 1 and the ratio of the
variances,

8 .
b=ZKsj+|tj|+' _ % (1)

ch

j=1
With perfect balance and no measurement error, both the Kolmogorov-Smirnov statistic
and the difference of means would be zero, and the ratio of the variances would be one. So,
the closer our balance measure is to zero, the more balanced our covariate sets are by this
particular measure.

The least balanced experiment in our simulation was the 947th experimental iteration
(shown in the lower right area of the plot), where the balance was about 16.36 (values
shown in Table 1), and the average treatment effect was —$2167.14, far from the true value
of 0. One might be tempted to believe then that when a randomized experiment results
in poor balance, the estimate of the treatment effect will likewise be poor. Of course, this
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Figure 2. Average treatment effect across 1000 simulated experiments.
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Table 1. Covariate balance for experimental iterations 947 and 693.

Experimental iteration 947, T = —$2167.14, b = 16.36

Covariate Kolmogorov—Smirnov p-Value Difference of means p-Value Variance ratio
1 0.093 0.401 —1.020 0.309 1.110

2 0.081 0.579 1.936 0.054 0.739

3 0.049 0.979 1.647 0.100 1.645

4 0.008 1.000 0.366 0.715 1174

5 0.124 0.117 —2.606 0.010 1.259

6 0.077 0.636 —1.761 0.079 0.791

7 0.127 0.100 —2.190 0.029 1.105

8 0.152 0.028 —2.230 0.026 1.128
Experimental iteration 693, t = —$2077.06, b = 4.44

Covariate Kolmogorov-Smirnov p-Value Difference of means p-Value Variance ratio
1 0.047 0.986 0.156 0.876 1.132

2 0.055 0.944 0.400 0.690 0.787

3 0.005 1.000 —0.186 0.853 0.944

4 0.014 1.000 0.533 0.594 1.225

5 0.058 0.920 —1.232 0.219 1.138

6 0.007 1.000 —0.143 0.887 0.989

7 0.083 0.545 —0.212 0.832 1.126

8 0.051 0.969 —0.276 0.783 1.082

may occur and, generally, better balanced experiments exhibit less variation, but as a rule,
it is neither correct nor guaranteed. Consider the results in the lower left or upper left area
of the plot. These data points represent simulations where the balance was good, but the
ATE was not good. In the 693rd simulation, for instance, the treatment effect estimate was
—$2077.06 while the balance value was 4.44. The balance is quite good for every covariate
yet the estimate of the treatment effect, 7, is far from zero.

Since our measures of balance involve only marginal distributions, one might rightly
wonder whether 7 is off in experimental iteration 947 because of imbalance in the joint dis-
tributions. This is a reasonable and testable hypothesis. One way in which we can examine
the difference in joint or higher order distributions is through the Kullback-Leibler Infor-
mation Criterion (KLIC). KLIC is a measure of the similarity of a probability distribution,
p, to another probability distribution, g.

KLIC(p,q) = ) _ pilog (‘%) : (2)

In our data, p arises from the control group while g is defined by the treatment group
covariates. In particular, we create an entropy covariate balance measure that combines
the Kullback-Leibler divergence measure for each covariate individually as well as includ-
ing the KLIC entropy measure for all 28 of the two-way joint covariate distributions. The
results are shown in the right-hand side in Figure 2. We can see that 7 may be far from the
true treatment effect even when the marginal and joint distributions are quite similar. In
summary, balance among the covariates can be quite good while 7 is not particularly close
to the true treatment effect even in a truly randomized experiment.

We know that when experiments are run well, we are not likely to obtain estimates on
the tail of the distribution. All the same, it is also clear that given one single estimate, we
have no idea where that estimate lies in the true underlying distribution. Given the inability
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to repeat the experiment, we assume that the estimate is a good estimate of the true ATE.
If one could easily replicate and run an experiment repeatedly, one would surely choose to
do so as this option is plainly superior to running an experiment once. In a larger sense,
this is how all science proceeds. For any single study, no matter how well conducted the
research may be, if no other researcher ever identifies similar results, that single study will
be discounted as an anomaly, on the tail of the distribution.

While these results and statements are not earth-shattering, the insights inherent in
them have nonetheless been neglected in the designs of methods for making causal infer-
ences from observational data. Consider, for instance that the statistical methods do not
incorporate the notion that there is not one valid experiment but many valid experiments
with different control individuals that yield essentially the same level of covariate balance.
Instead, the methods identify one ‘best’ matched group without regard to a possible myr-
iad of other sets of individuals that could have constituted another valid experiment. They
do not identify other matched groups that other equally valid experiments may embody
nor do they contextualize the solution they identify. One has no sense of how much better
this ‘best’ identified group is from the next best group or whether there are other matched
groups that correspond to an equally valid experiment. Possibly there are other equally or
better matched groups that yield conflicting estimates of the average treatment effect. In
short, these methods place undue confidence in the identification of one matched group.
More ideally, a single experiment should be regarded as a single experiment, a single real-
ization of a random variable. To understand this single value well, it needs to be properly
contextualized.

3. Computational modeling to capture statistical reasoning

For an experiment, it is difficult to garner the resources to repeat an experiment many
times. Time and resource constraints, however, are alleviated when one wishes to make
causal inferences from observational data since no experiment is actually conducted.
Instead, the question becomes: if it is possible to statistically adjust once, is it possi-
ble to modify the process so that we are able to extract insight into the distribution of
experimental outcomes?

The Balance Optimization Subset Selection (BOSS) method for making causal infer-
ences from observational data [2] allows us to achieve these goals by incorporating a
computational optimization model that captures the statistical reasoning we have outlined.
This method seeks to identify the solution with the best balanced covariates, but in the
process, finds many other solutions in the solution space that are also consistent with ran-
domization and outputs a host of solutions that satisfy a given criterion. It is akin to other
causal inference methods in that it identifies control groups that are close to the treatment
group. It is different, however, in its fundamental design because it identifies and saves all
control groups that are above some standard of randomization.

3.1. Mimicking completely randomized experimental framework

BOSS also embodies important departures from the general design of matching methods.
First, while other methods attempt to match individual treatment and control units to one
another in paired unit sets, BOSS examines subsets of the control group and identifies those



JOURNAL OF APPLIED STATISTICS ‘ 7

subsets that achieve an optimal level of covariate balance between the treatment group and
the control group in the aggregate.> BOSS seeks to post-process observational data so that
they resemble a randomized control trial. By shifting the focus from matching individual
units to the overall balance in treatment and control groups as a whole, BOSS reframes
the causal inference problem from a matching problem to a subset selection problem. For
BOSS, given the treatment group, T, and a control pool, C, the goal is to find Sy € T, a
subset of the treatment pool and S; € C, a subset of the control pool, so that a measure of
balance, b(S;, S.), is maximized.

For the traditional matching problem, one seeks to identify individual treatment units,
t € T, and individual control units, ¢ € C, so that a defined distance between two units,
8(c, ), is minimized. One may formulate this as an optimization problem [18]. Akin to the
personnel assignment problem [14], the objective is to identify matched pairs so that the
total distance between all matched pairs is minimized,

minimize E E 8(c, t) ag
a
teT ceC

subject to Z aie =1, Vt,
ceC

3)

where a;. is 1 if treated unit ¢ and control unit ¢ are matched and 0 otherwise. The
constraint (3) indicates that the matches are 1-1 and include every treated unit. This for-
mulation can be easily changed so that matches are 1-k and/or not all treated units are
included. Neither modification is significant in the basic formulation of the problem. Once
the optimization is completed and the matched pairs are identified, the matched controls
units are placed in S, the treated units are placed in S, and then the balance, b(S., ) is
computed. The hope is that the identified set of matched pairs results in sufficient covari-
ate balance between the identified control and treatment sets. This assessment is made
after the optimization is complete by computing statistics related to the empirical covariate
distributions from the identified treatment and control units.

With BOSS, the objective function directly minimizes the imbalance between the treat-
ment and control subsets. The process does not involve computing any distances or
similarity measures between individual units. Computing these distances is not necessary
for obtaining covariate balance and restricts the design to the pair-randomized framework.
Our objective function is

minimize w; bi(S;, S
(o)) Z 1 z( [4 t)

(4)
subjectto |Sc| = |S¢l,

where w; is a weight for the ith balance measure, b;. Given some set of covariate balance
measures, b;, BOSS identifies the subsets S, and S; that minimizes imbalance, subject to
equally sized treatment and control subgroups. The constraint (4) is flexible - the cardi-
nalities of the subsets need not be the same. In the current algorithm, the cardinality of the
control group is fixed by the user at the outset and, in our examples, is set to the cardinality
of the treatment group. Once the BOSS optimization routine is complete, the subsets identi-
fied will be maximally balanced. Unlike traditional matching methods that hope to obtain
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balance by minimizing distance between matched pairs, the BOSS optimization routine
directly balances the covariates.

By identifying entire treatment and control subsets that minimize differences in the
empirical covariate distributions, BOSS differs from other approaches because it mimics a
completely randomized experiment rather than a block-randomized (or pair-randomized)
experiment that lies at the foundation of propensity score methods or Mahalanobis metric
matching. To be sure, any of these frameworks approximates a valid experimental design
that may yield covariate balance consistent with randomization. These approaches gener-
ally will not yield identical solutions but will rather yield different solutions with possibly
indistinguishable balance. Just as there are many different valid research designs for exper-
iments, there are many ways in which subsets of observational data may be extracted
to approximate these varied research designs. Notably, the BOSS framework subsumes
these experimental frameworks that are incorporated into existing matching procedures
since block-randomized designs and pair-randomized designs are also identified by BOSS’s
computational modeling approach.

The computational/optimization framework of BOSS procedure allows one to extract
information from many different subsets. While BOSS is searching the solution space for
all control subsets that are consistent with a randomization framework, the best subset
is recorded along with many of other subsets encountered in the optimization search for
control and treatment groups that are statistically indistinguishable from those that might
have arisen from a randomized experiment. The information from the many different
as-if-randomized subsets allows us to gain a sense of the underlying distribution for the
treatment effect, .

BOSS’s shift from individual matching to subset selection highlights an interesting com-
binatorial aspect of both the matching methodologies and the subset selection method-
ology. In particular, for even moderately sized data sets, the set of possible ‘solutions’ is
extremely large. For instance, if our control pool has 100 members, and we wish to choose a
subset of size 20, there are (12000) = 5.359834 x 10%° possibilities. Given the sheer size of the
problem, finding the best or most balanced subset in this solution space proves challenging.
Moreover, the solution landscape is not rugged. While the landscape is hilly, these peaks
and valleys are not a rapid succession of precipices, but instead, a series of vast plateaus.
These expansive plateaus manifest themselves throughout the landscape because many
possible subsets of the data are similar to one another. It is readily evident that swapping
several units for other units in a large data set should not alter the covariate balance much.
Yet, even among subsets with substantially or completely different composition, many of
these different subsets are equally consistent with a randomization process. Indeed, just as
a randomized experiment can be conducted repeatedly, there may be many subsets of the
observational data that are consistent with a randomization procedure.

While it would be ideal to conduct a series of randomized experiments, doing so is
often not practical. Estimating causal effects from observational studies is understandably
more complex and less reliable than estimating causal effects from a randomized experi-
ment. Data limitations and the Selection on Observables assumption cannot be overcome.
However, a heretofore overlooked point is that the extraction of so many different subsets
of observational data consistent with randomization procedures can yield a tremendous
advantage. Given some threshold dividing ‘putatively randomized’ from ‘putatively not
randomized’ studies like a p-value on an omnibus balance test or a function of a collection
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of p-values, we can produce many different designs, all of which would prima facie qualify
as a randomized experiment.

4. The LaLonde NSW data

We turn to the LaLonde data to demonstrate how integrating a computational approach
with the statistical foundations of causal inference models can yield substantive insights.
The LaLonde [15] data hail from an experiment designed to capture the effect from par-
ticipation in a temporary employment program designed to help disadvantaged workers
lacking basic job skills to move into the labor market by providing work experience and
counseling in a sheltered environment. Qualified applicants to the training program were
randomly assigned to treatment and control groups, creating a randomized job training
experiment. The treatment group received the benefits of the NSW program while the con-
trol group did not. The NSW provided wages for the participants that could increase based
on job performance. After the program period expired, the participants were forced to find
regular employment. Earnings and demographic data from both the treatment and con-
trol group were collected every nine months. A number of scholars have pursued varied
paths for causal analyses with the LaLonde data, raising a number of estimation issues, and
presenting different substantive interpretations [3-7,10,15,25-28].

In our analysis of the LaLonde data, we use the Dehejia and Wahba [5] subsample for
the treatment group, which includes pre-treatment income in 1974 as a covariate, and the
individuals from the Current Population Survey (CPS) for the control pool. We do not use
the control group from the LaLonde data.* The treatment group contains m = 185 indi-
viduals and the control pool contains N—m = 15,992 individuals. In this data set, there are

eight covariates, x1, . ..,xg. The purpose of the study was to discover how real earnings
in 1978 (RE78) might have changed as a result of being a part of the NSW job training
program.

In these data, each person i has two potential outcomes, one from assignment to the job
training program, Z; = 1, and one from exclusion from the program, Z; = 0.°> The poten-
tial outcomes, y; z.—1 = yi1 and y; z.—o = yio, represent the person’s real earnings in 1978.
If the two potential outcomes differ, y;; # yio, then we say that the job training program
had a causal effect for person i. The fundamental problem of causal inference is that it is
impossible to observe the value of both y;; and y;o, because each subject was either exposed
to the job training condition or was not. To gain some traction in this situation, Neyman
[16] suggested reconceptualizing the framework to focus on the average causal effect across
the treatment and control groups,

1 (& 1 (Y
T=y <1221 Ziyil) -N (,:Zl(l - Zi)}’io) , (5)

so that either the potential outcome under treatment or under control, but not both, needs
to be observed for each unit [12,22,23]. He showed that, across repeated randomizations
of treatment, the observed difference of means between the treated and control groups is
an unbiased estimator of the unobserved average treatment effect (ATE), i.e. E(T) = t.
For the LaLonde data, BOSS identifies subsets of the control pool that achieve a particu-
lar level of balance with the treatment group for the eight covariates in the data set. Initially,
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we began with the balance measure (1) that we used in our earlier simulations. The subsets
that emerged had reasonable balance, but we noticed that it was difficult to find enough
blacks for the control subset. Since the balance on all of the variables is equally weighted
and some variables are much simpler to balance, the algorithm tended to sacrifice balance
on the black variable for very close balance on other variables. To encourage the optimiza-
tion routine to obtain better balance on the substantively important black covariate, we
weighted that variable more highly than the others. Note that the weighting here is sim-
ply a method for guiding the optimization routine toward portions of the solution space
that are difficult to reach. The weights do not imply substantive changes in modeling the
underlying phenomenon.

Another difficulty arises from the bi-modal nature of the real earnings variable distri-
bution. For the large number of the observations where a job was not sustained, the real
earnings was $0, reflecting lack of employment. The information contained in the mean
and Kolmogorov-Smirnov statistic are insufficiently nuanced to capture the distributional
shape of these variables. Accordingly, we created a number of new variables intended to
provide data points that were more expressive of the idiosyncratic nature of the particu-
lar covariates in the data set. Real earnings for 1974, real earnings for 1975, and the age
variable were broken down into quintiles. For the real earnings variables, we also created
indicator variables for when the value fell at the minimum or the maximum values of the
distribution. Education was broken down into three levels. These additional variables pro-
vided additional guidance for identifying subsets where the distributions of the control and
treatment variables were more closely aligned.

Our balance variable was

26
Ot
b=ZWj<Ksj+|tj|+‘ -

j=1 74

) ; (6)

where wj is a weight for the jth variable. In our case, the weights for the black variable was
3 while the weight for the other 25 variables was 1. The weighting helped the algorithm to
more successfully balance the distribution of blacks in the control sets without having an
adverse effect on the balance for the other variables.

Once we identified our subsets, we computed the ATE as specified in Equation (5). A
summary of the BOSS solution search using the LaLonde data is shown in Figure 3 while
the summary statistics for the results are provided in Table 2. In the figure, the dark solid
line shows the mean ATE for solutions that fall in a range of objective functions values.
The lighter solid horizontal line displays where the experimental benchmark value lies.
The lighter grayed area displays one standard deviation of these estimates while the darker
shaded gray area shows two standard deviations for the estimates.® Despite the fairly large
range and standard deviation of our estimated treatment values, both the range and the
variance tend to become smaller as the objective function value improves. Though the
range is fairly large, as we expected, the minimum value is well above zero, indicating a
positive effect from the job training program.

Our lowest objective function value was 10.62.” This particular solution yielded an
estimated treatment effect of $1870.08 ($129.33 from the experimental benchmark). In
addition, we found three other solutions whose balance was within a hundredth of 10.62.
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Figure 3. LaLonde data: average treatment effect by objective function range.

Table 2. Lalonde data: solutions sorted by objective function value.

Treatment effect Kolmogorov-Smirnov

Objective function

range Observations Mean SD Minimum Maximum Mean SD
10.0-15.0 2578 1717.54 260.54 1211.40 2232.90 0.02 0.01
15.0-20.0 2607 1646.77 221.73 1030.04 2316.60 0.01 0.01
20.0-25.0 2595 1521.63 209.35 765.45 2014.36 0.01 0.02
25.0-30.0 2536 1527.65 288.47 970.47 2249.91 0.03 0.03
30.0-35.0 2727 1197.72 194.80 506.34 1779.61 0.07 0.06
35.0-40.0 2897 1020.89 247.05 414.86 1777.75 0.12 0.12
40.0-45.0 2598 1041.91 228.05 42261 1695.36 0.08 0.07

Note: Control and treatment group sizes are constrained to be equal. Control groups do not contain any duplicate
observations (i.e. individuals are chosen without replacement).

The ATE:s for these solutions were in the range [1893.88,1914.97]. We also identified a solu-
tion with an ATE within a penny of the experimental benchmark. Its balance value was
15.80. Importantly, note that for these data, there was a good deal of variance in the treat-
ment effect estimate even among the set of solutions with the best objective values between
10 and 15. In this set, we identified 2578 subsets that together had a mean of $1717.54 and a
standard deviation of $260.54. The experimental benchmark is well within a standard devi-
ation of our solutions in this objective function range. Our emphasis, of course, is not on the
single experimental benchmark estimate. Instead, our point here is that there is much more
information revealed through the set of solutions within a well-balanced range of objective
functions as these all ostensibly represent valid experimental designs. In the balance range
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between 10 and 15, we see more uncertainty about the estimated treatment effect than is
unearthed by any one solution, including the solution associated with our lowest objective
value. In the experimental simulation that we presented in Section 2.1, 137 out of the 1000
simulations yielded an objective function value that exceeded our minimum value of 10.62.
Our best balanced subset, despite being somewhat on the outskirts compared to our sim-
ulated experimental data, still comfortably resembles a subset that might have arisen from
a statistically valid randomized experiment. At the balance value obtained, this solution is
also the subset that embodies the best balance achieved with these data from a procedure
that chooses a subset with or without replacement [4-7,25-27].8

5. Discussion and conclusion

The causal inference literature strongly favors the outcome with the ‘best balance’. How-
ever, as we clearly see, the best balance does not necessarily yield the estimate for the
average treatment effect that is closest to the true treatment effect. In our simulation, all
of the subsets generated were the result of a randomization process. Accordingly, while
there are many distinct solutions, they, together, yield collective information regarding the
phenomenon in question. It is the mean that is an unbiased estimate of the true treatment
effect. Any one estimate, no matter how well balanced the control and treatment group are,
may not be close to the true treatment effect.

It is also important to note that many levels of balance are indistinguishable. In our
simulated experiments, each outcome was the result of a randomization process. The levels
of balance in each experiment, as we would expect, are all different, but consistent with a
randomization process. Even for the experiment that, in isolation, yields a p-value that
implies it may not have arisen from a randomization process, needs to be understood in
context. Randomization sometimes produces odd results. If the p-value is .05, then that
result may be odd, but we do expect to regularly see that result 1 out of every 20 times that
the experiment is conducted. For the other 95%, while both the p-values and the balance
differed, they are essentially indistinguishable in the sense that they are all consistent with
randomization at the .05-level. We ought to view the experiments as a collective rather
than choosing the best balanced experiment and considering it only in isolation, which is
especially true when the outcome variable is noisy.

Since randomization is the standard for experiments, any solution that satisfies some
randomization threshold should be included in this set. The reported ATE estimate should
then be the mean ATE of this set of solutions. The SE may be calculated as the SD of this
set of ATEs. It is difficult in the framework of the extant causal inference models to extract
this type of information. It is much simpler to achieve these goals within the framework
of a computational model. An advantage of our approach is that we realize and utilize
more information than other matching methods. A linear model would also use infor-
mation from more data, but a linear model permits only associational inferences from the
unbalanced data set. Our approach first creates balanced data sets and then uses them in a
framework that permits causal inferences.

The LaLonde data have been highlighted in many different causal inference analy-
ses. Some of this debate has centered around achieving sufficient covariate balance with
matching methods. We have identified the best subsets to date, but more importantly,
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have identified a large number of subsets that are consistent with randomization, giving
us confidence that the NSW program had a positive effect on future earnings.

We have presented an overarching research design framework via design-based
approaches that can be incorporated into causal inference analyses. While we relied on
BOSS as our method for identifying experiments that are latent in an observational study,
our framework is general and not limited to the BOSS methodology. The ideas translate to
many matching methods, including designs identified by methods that mimic only block-
randomized designs. BOSS automates the process by saving all solutions beyond a specific
balance threshold.

It is certainly possible that, despite our best efforts, our analysis does not capture the
underlying truth. In an observational study, we must always consider the possibility that
unobserved covariates confound the analysis. Estimates from statistical models can cer-
tainly be affected when the underlying data are problematic. The methods and design
we have presented do not differ from other statistical methods in this regard: statistical
modeling cannot solve data woes. Sensitivity analyses that consider the potential impact
of unmeasured confounders are still important [1,11,17,21,24]. If these data problems do
not exist, however, our methodology provides interesting and new information for making
causal inferences.

Indeed, there are multiple avenues for future research. First, the computational approach
identifies a large-scale optimization instance for which there is ample room for the devel-
opment of appropriate and efficient heuristic algorithms. Second, we do not purport that
the set of solutions identified consists of independent sets. If they were, we would be able to
gain additional leverage toward the identification of the true underlying distribution of the
treatment effect. Toward this end, a research direction may be to refine the computational
algorithm to limit the extraction of solutions to those that exceed a threshold of indepen-
dence from previously identified solutions. Another option would be to quantify the new
information in each set and then to weight the solutions accordingly. Either advance would
add to the idea advanced by this paper — multiple as-if-randomized solutions are better
than a single as-if-randomized solution.

Plainly, our approach is computationally intensive. In the course of our research, we
have discovered many computational challenges presented by the very large number of
essentially equivalent experiment-like designs that are discoverable within an observa-
tional study. The computational burden is non-trivial. At the same time, we enthusiastically
welcome the challenges because they illuminate opportunities to increase our understand-
ing of how to obtain causal inferences. We know with certainty that computing power
is on the rise (along with easier parallelization and hardware advances), so enumerating
and extracting insights from permutations of many solutions become faster and simpler
every day. We embrace this sign of the times and present an analysis of the Lalonde
data to illustrate the virtues of integrating statistical modeling into a computational
approach.

Notes

1. An exception is Zubizarreta’s design, which is more flexible and optimizes directly on particular
balance measures. All of the designs are the same, however, in that the implementations of these
approaches provide one solution to whichever version of the matching problem is posed.
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. We also note that there are situations that are more amenable to causal inference analyses than

others. These do not change with our method. For instance, matching methods and our method
are more ideal when the control population is much larger than the treatment group size.

. Other matching technologies match treatment and control units (not subsets) first then assess

the success of the matching later by the level of balance achieved. Without knowing how all
matching methods perform, it is difficult to assess if balance is good or ‘good enough’ because
the baseline or optimal level of balance in a particular data set is unknown. In BOSS, the goal is
optimal balance, not ‘good balance’. The optimal level of balance is the baseline or standard for
assessing any particular balance level.

. Note that we are not using randomized experimental data in our analysis, but using only the

treatment group from the LaLonde data. We use the LaLonde data because it has been widely
used in the literature. This provides a comparison for our model vis-a-vis other models as well
as a benchmark estimate from the original data.

. We presume that there is no spillover between individuals (i.e. we make the stable unit treatment

value assumption (SUTVA).

. We can see from the figure that as balance improves, one standard deviation around the estimate

of the treatment effect includes the experimental benchmark, ¢ = $1794. To be sure, we do
not know the true value of the treatment effect in this instance. We refer to the experimental
benchmark here simply to offer some guidance, without certitude, and with sufficient wariness.

. The objective function, meant to measure covariate balance is flexible in the BOSS technology.

A researcher can define balance in any way. The BOSS routine will seek to optimize whatever
balance measure is given to it. Our particular formulation for the LaLonde data is specified in
Equation (1).

. Itis possible that we have not identified the best subsets. Certainly, the optimization procedure

can still be and is still being refined.
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