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ABSTRACT

Recently, Chikina, Frieze, and Pegden proposed a way to assess significance in a Markov chain without
requiring that Markov chain to mix. They presented their theorem as a rigorous test for partisan gerry-
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mandering. We clarify that their e-outlier test is distinct from a traditional global outlier test and does

not indicate, as they imply, that a particular electoral map is associated with an extreme level of “partisan
unfairness.” In fact, a map could simultaneously be an g-outlier and have a typical partisan fairness value.
That is, their test identifies local outliers but has no power for assessing whether that local outlier is a global
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outlier. How their specific definition of local outlier is related to a legal gerrymandering claim is unclear

given Supreme Court precedent.

1. Introduction

An important problem in probability and statistics, with
extensive applications, is determining how to sample from
complicated probability distributions that may not be explicitly
describable. The standard method for sampling from an
unknown distribution is the set of Markov chain Monte Carlo
(MCMC) techniques, including, for example, the Metropolis-
Hastings algorithm (Metropolis et al. 1953; Hastings 1970), the
Gibbs Sampler (Geman and Geman 1984), and coupling from
the past (CFTP) (Propp and Wilson 1996).

A sequence of random variables that take on values in a state
space is called a Markov chain if the probability of the next step
depends only on the current state,

s x1) = P(xy | xp—1). (1)

If the Markov chain is irreducible and aperiodic, that is there
is an integer m such that every state is accessible in exactly m
steps from any state, and positive recurrent, that is, the expected
return time to any state is finite, then its stationary distribution,
7, is the unique probability distribution satisfying ", 7 (i)P;j =
7(j), where Pj = P(x, = j | x4-1 = 1i). If we can
construct such a Markov chain that has the unknown distri-
bution as its stationary distribution, and we run this chain for
a sufficiently long time to achieve mixing (i.e., the chain has
approached a state of equilibrium), then each state visited by
the chain is close to a representative sample of the underlying
distribution.

A current area of interest, where Markov chains could prove
useful, is in the area of redistricting. It is conjectured that some

Plx, | Xn—15...

electoral maps are gerrymandered. These suspicions are fueled
by several observations. First, many of these maps were devised
by partisan and self-interested legislators. Second, there are large
discrepancies between the proportion of seats won by a certain
party and the proportion of the statewide vote won by the same
party. Despite the U.S. system not being one of proportional
representation (PR), many intuitive and normative notions of
fairness are violated when there is a large deviation between the
results and PR.

The Supreme Court has declared that partisan gerryman-
dering is unconstitutional. However, it has yet to identify a
manageable standard for adjudicating partisan gerrymander-
ing. That is, the Court does not know how to distinguish a
partisan gerrymander from a constitutional electoral map. It
has stated that partisan information may be used in the con-
struction of a map, and that “[t]he central problem is deter-
mining when political gerrymandering has gone too far” That
is, “the issue is one of how much is too much.” (Vieth v. Jube-
lirer, 541 U.S. 267 2004). The implication is that maps that
use partisan information excessively are unconstitutional. This
has led to the idea that one tactic for challenging the consti-
tutionality of electoral maps is to demonstrate that a disputed
map has a partisan outcome that is “not typical” of the set of
all maps that could have been drawn. In statistics, one way
to help us understand what is typical and atypical is to con-
struct the underlying population distribution, which may be
done for redistricting by sampling the space of legally viable
maps.

In redistricting, a state is allotted some number of districts,
say d. Each state has N > d precincts, and a map is a certain
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partition of precincts into districts.! Districts are almost always
required by law to be contiguous and equi-populous. One way
to define equi-populous is that for a certain ¢ > 0, for each pair i
and j of districts, if p; and p; denote the populations of districts i

and j, then ‘% — 1‘ < ¢. The law also requires compliance with
g)

the Voting Rights Act, which ensures minority representation.
In addition to these legal constraints, the Court has articulated a
number of “traditional districting principles,” for which it values
adherence (e.g., compactness and the preservation of political
subdivisions and communities of interest).

The state space of all maps that satisfy the Court’s criteria
is the extremely complicated state space from which we would
like to be able to sample uniformly. A simpler (but much larger)
space is the space of maps with just contiguous districts, that is,
partitions of the precincts into d districts, Si, . . ., Sg, where the
only requirement is that each precinct is contained in exactly
one of the Sj’s, and each S; is a connected subset of the entire
electoral jurisdiction. This space may not be the space of all legal
and viable maps if there are other legal criteria that must be
taken into account, but it may provide a useful starting point.
For instance, an idea for sampling legal districts is to begin
with some partition into connected regions (e.g., the challenged
map), and then use an MCMC model to explore the space of
legal districts. This approach is taken in several papers (Bangia
etal. 2017; Herschlag, Ravier, and Mattingly 2017; Mattingly and
Vaughn 2014; Fifield et al. 2017).

2. The Chikina-Frieze-Pegden Test

Recently, Chikina, Frieze, and Pegden (2017) (CFP) proposed
another approach for assessing whether a disputed map might
have used partisanship excessively. They do not attempt to pro-
duce a representative sample of legal maps, but rely instead on
the existence of a reversible Markov chain to provide the basis
for an outlier test. They prove the following theorem.?

Chikina, Frieze, and Pegden’s Theorem. Let M = (Mo, My, ...)
be a reversible Markov chain with stationary distribution 7. If
My is distributed according to 7, then for any fixed ¢ and k, the
probability that My is an g-outlier among Mo, M1, . .., Mk is at

most 4/2¢.

They seek to apply this theorem in the redistricting context.
In their paper, they discuss how this test might be applied to
the redistricting of congressional districts in Pennsylvania. They
provide the Pennsylvania example to illustrate how their test
might work, but do not delve deeply into how they propose
to translate their mathematical theorem into a formal test for
gerrymandering in a court of law. However, we can gain an
accurate sense for how CFP intend to translate their theorem
into the legal context through the expert witness report of one
of the authors, Pegden, who testified under oath in Pennsylva-

A precinct is the lowest level of geographic aggregation where election
datais available. One may use smaller geographic units (e.g., census blocks)
for redistricting, but then the election results must be estimated, which is
not ideal for partisan gerrymandering claims since the estimation induces
another source of uncertainty and error.

2A Markov chain is reversible if there exists a probability distribution, 7, such
that 7/P(Xp11 =j | Xn = ) = 7jPXn11 =i | Xn =), for all states i and .
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nia state court in a case challenging the Pennsylvania map as
a partisan gerrymander (Pegden 2017). In particular, Pegden
advocated the CFP theorem as a test for whether a disputed
map is an outlier “among all possible legal maps.” Pegden writes
on the first page of his expert report, “In my analysis, I find
that the present Congressional districting of Pennsylvania is
indeed a gross outlier with respect to partisan bias, among the
set of all possible districtings of Pennsylvania (emphasis added)”
The word “all” in this statement makes the comparison set the
space of all possible electoral maps, which implies that the CFP
theorem is able to identify a global outlier with respect to some
partisan metric for maps.

To support the adaptation of the CFP theorem to redistrict-
ing, they suppose that we have a function w : X — R, which can
be taken to be an arbitrary function. Here, X is the set of electoral
maps. The function w is used to determine what constitutes an
outlier, since it is straightforward to order elements in R, but an
arbitrary state space may not have a convenient structure. That
is, it may be simple to order elements in R, but how to order
electoral maps is less clear. For a real number ¢ > 0, we say
that a real number, «, is an ¢-outlier among a sequence of k+ 1
numbers, o, o1, . . ., A, if

#li:0<i<k:o;<ay} <elk+1).

Less formally, o is an outlier if we rarely encounter a number
as small as «p in the observed sequence, g, 1, . .., k. In the
partisan gerrymandering context, w would be some measure of
“partisan unfairness.” Pegden uses a mean-median test as well as
a variance ratio test for his analysis for the court, but the measure
is immaterial to the test and could just as well be, for example,
the efficiency gap, the number of seats, or measures derived from
the seats-votes curve (Grofman and King 2007; Stephanopoulos
and McGhee 2015).

To translate back to the Markov chain framework, given
the Markov chain M, we say that My is an e-outlier among
Mo, M, ..., M if and only if w(Mp) is an e-outlier among
(M), (M), ...,wo(Mg). That is, a particular map, My, is
an g-outlier among the set of observed maps if its measure of
partisan unfairness, «y, is an ¢-outlier among the associated
partisan metrics of those maps. CFP present the g-outlier test
as a rigorous way to detect gerrymandering.

2.1. The Redistricting State Space

We examine the proposal to employ the e-outlier test as a way to
detect partisan gerrymandering. While the Supreme Court has
yet to accept a particular quantifiable gerrymandering test, they
are clear that “judicial action must be governed by standard, by
rule” Here, the rule or test would help determine “when political
gerrymandering has gone too far” (Vieth v. Jubelirer, 541 U.S. 267
2004).

The CFP test appears promising because the theorem is
concerned with identifying “outliers,” and, in particular, what
CFP call “c-outliers” The Court’s language—“how much is too
much”—seems consistent with the idea that if something can be
deemed an “outlier;” then there is a logical way to understand
that as “too much” The Court has, in addition, referred to “an
extremity of unfairness,” which also seems to translate nicely to
the statistical notion of an outlier.
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To examine the relationship between the CFP g-outlier and
the legal definition of a partisan gerrymander, we begin with an
observation about the state space that characterizes the redis-
tricting application. Let us write P for the set of precincts and
[d] = {1,2,...,d} for the set of districts. Precincts p;, p; € P,
i # j, are geographically adjacent if and only if they share
a border of positive length. The state space X is the set of
electoral maps, which are functions f : P — [d] satisfying
various constraints like contiguity and equi-populousness.® Fur-
thermore, we only consider functions up to relabeling of the
districts.

To transition from one state to the next, for each state f € X,
we compute a proposal distribution 6 on X, depending on f. If
M, = f, then to determine M,,; |, we sample g € X according to
6. The CFP chain accepts the proposal and moves, M1 = g,
if this results in a legally viable map, and rejects the proposal
otherwise.

The CFP chain does not allow movement into infeasible
regions at all. That is, the CFP chain allows movement from one
map to another only when the movement of one geographic unit
results in another feasible map (where feasible is defined as being
amap that satisfies the legal criteria imposed on electoral maps).
For any redistricting application, the feasible regions vary in size
in some unknown manner. The CFP chain would not be able to
move throughout the state space, though CFP state that their
theorem “applies even if the chain is not irreducible (in other
words, even if the state space is not connected), although in
this case, the chain will never mix (Chikina, Frieze, and Pegden
2017, p. 2861).” In other words, the CFP chain would not be able
to visit all states, which CFP acknowledge, but their theorem is
valid even for a disconnected state space.

Figure 1 shows two Markov chains where movement is
defined by the shift of one geographic unit to an adjacent district.
The underlying data come from 25 precincts from the state of
Florida.* This dataset is well-suited for our purposes because
it is both large enough to be nontrivial and small enough that
it can be examined in depth. The number of ways to partition
25 precincts into 3 districts without constraints is a Stirling
number of the second kind, S(25,3) = 141,197,991,025. At the
same time, the number of possibilities is small enough that we
can enumerate the entire set of feasible maps. Since we have the
underlying population distribution, we know the correct answer
for these data. If we impose a contiguity constraint, the number
of valid partitions reduces by several orders of magnitude to
117,688. If we further impose a population constraint that
requires the population deviation from the ideal population
to be less than 10%, the number of valid partitions drops to
927

The behavior of two different Markov chains is shown in
Figure 1. Both chains are of length 10,000. They were each

3The specific criteria for “legal maps” can vary from state to state. We make
no claims about how a legal map should be defined. Instead, here, “legal
maps” refers only to maps that must satisfy some set of constraints.

4This dataset is available in the redist CRAN package (Fifield et al. 2017).

5This dataset is much smaller than an actual redistricting instance, but it
exhibits the phenomenon we wish to highlight that also occurs for the
much larger actual redistricting problems. Using small datasets with a
known answer is a common way to test algorithms intended for larger data
instances where the answer is unknown since the small datasets allow us
to identify where problems might occur.

started from a different (randomly generated) feasible map. The
dark gray bars show metrics for the underlying population of
feasible maps.® The light gray bars show metrics from the states
visited by the Markov chain. The chain on the left traverses more
of the space than the chain on the right. It visits 486 feasible
maps. The chain on the right moved between only two of the 927
feasible maps because these two maps are disconnected in the
state space from all of the other maps. That is, no other feasible
map, outside of these two maps, can be reached within the
population and contiguity constraints with a single movement
of one geographic unit to an adjacent district.

While the chain on the left visited a little more than half of
the feasible maps, we can see that there is a portion of the state
space that was never visited (the maps with larger values on the
partisan metric). This portion of the space is disconnected from
the visited space and cannot be reached no matter how long the
chain is run. In this instance, if we were to begin the chain at
the map in this disconnected subspace with a partisan metric
of 0.16 and use the CFP test to explore whether this map is an
extreme statistical outlier, the result would be highly significant
because virtually all other maps that can be reached by this chain
would have a smaller value on the partisan metric. At the same
time, while a map with a metric of 0.16 may be a CFP ¢-outlier,
it is not an outlier in the space of all feasible maps. It has an
outlying value in the space that was traversed by the chain, but
we do not know how the space that was traversed by the chain
is distributed in the entire state space. The 0.16 map would
be (correctly) identified as an e-outlier, but it is not a global
outlier.

The plot on the right side of Figure 1 further exemplifies
that a Markov chain can traverse only a very small portion of
the state space. Though this chain also ran for 10,000 steps, it
explored only a very small portion of the overall state space,
only two maps in total. Figure 2 shows the two maps it visited
and allows us to verify that if either of these maps is the start-
ing point, it is only possible to reach the other map with one
unit moves. All other possible maps are unreachable because
either the population or the contiguity constraint is violated by
such a move. The CFP test can assess whether a unit is an &-
outlier only within the space that its Markov chain traverses.
Moreover, the extent of the traversed space varies, depending
on the starting point of the chain, and it may be quite small.
Further, and importantly, as this example illustrates, all of the
traversed space may lie in the middle portion of the underlying
distribution.

In this case, CFP would (again correctly) identify neither of
these two maps as an e-outlier. We are not arguing that the
CFP theorem produces an improper p-value for a particular
phenomenon. We point out only that there is little relationship

5The metric is “Republican dissimilarity” This measure was provided in the
dataset. We do not make any claims about this measure or about its
relationship to the concept of partisan fairness. Note that the measure is
unimportant for the point we are making. If we are able to sample from
the space of all feasible maps, we can recover the distribution of any map
metric since we have recovered a representative sample of maps. The Court
has made no pronouncements about the proper partisan metric. We make
no claims here either. We make no substantive claims whatsoever about
whether partisan gerrymandering has occurred. We are not exploring what
might be a proper metric. Those arguments are completely orthogonal to
the exercise here.
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MCMC Chain 2 of length 10,000
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Figure 1. The dark gray histograms show the underlying population. The light gray histograms display the sampling behavior of the Markov chains.
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Figure 2. Two feasible maps, connected to one another in the state space, but isolated from the rest of the feasible state space. The map on the left shows the population

counts for each precinct.

between an e-outlier and a global outlier. If two isolated maps
had a metric near 0.23, which is a global outlier, CFP would still
(correctly) identify them as not e-outliers. A map can be an ¢-
outlier and not a global outlier. Likewise, a map can be a global
outlier without being an ¢-outlier. Neither one implies the other.

If the underlying distribution is unknown, it is also unknown
where in a distribution a Markov chain may be traversing.
Identifying that a state is an -outlier in the CFP sense, meaning
that it is an outlier in some connected subspace traversed by
some Markov chain, does not provide any information about
whether that state is an outlier in the global space of all possible
redistricting maps. Because we have no idea what part of the
underlying distribution of all maps is being explored by the CFP
chain, the CFP chain can compute a p-value in a valid way within
the space it explores, but the entirety of the explored space can
still be comprised of maps that all have typical partisan metrics
in the global space.

To be sure, in our first example in Figure 1, it would be
unusual to begin with the map at the right tail of the light gray
histogram. But, has the Supreme Court asked a question that can

be translated as “is it unusual to have started a Markov chain
with a map that is on the tail of the light gray histogram?” The
Court asks whether a map is a partisan gerrymander. Whether
this could be the same question is a legal issue that must be
determined by the Court.

2.2. Detecting Gerrymandering With the CFP Test

CFP apply their theorem to detect whether the current Penn-
sylvania congressional map is an outlier among “all possible
electoral maps” (Pegden 2017). They claim that this is a way
to rigorously detect gerrymandering. In Pegden’s report for the
court, he states that,

when I report that Pennsylvania’s 2011 Congressional dis-
tricting is gerrymandered, I mean not only that there is a
partisan advantage for Republicans and that districtings with
less partisan bias were available to mapmakers, but indeed
that among the entire set of available districtings of Penn-
sylvania, the districting chosen by the mapmakers was an
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extreme outlier with respect to partisan bias, in a statistically
rigorous way (Pegden 2017, p. 2).

He does not qualify this statement to say that his test can
identify a map as an extreme outlier in partisan bias even when
the identified partisan bias value is a perfectly typical partisan
bias value for the set of all maps. He states that his p-value
identifies the phenomenon of partisan gerrymandering, a legal
phenomenon that is defined by the Supreme Court and is not
subject to redefinition outside the Court.

Moreover, regardless of what is proposed or by whom, and
whether the test is mathematically or statistically rigorous or
not, whether the proposal is adopted by a court of law is a
legal question. It is the court who makes the determination
of whether they wish to adopt any particular test as a judi-
cially manageable standard for adjudicating partisan redistrict-
ing claims. Their determination respects mathematical rigor,
but is necessarily and heavily guided by existing case law and
precedent. To make this determination, the court does not
need to understand all of the mathematical details, but it must
understand precisely what is being measured.

To be clear, we take no issues with the mathematics behind
the CFP theorem or its proof. We make, however, an important
observation that mathematics and the law are not harmonious
or helpful to the other unless there is common understanding
and effective communication. One way in which communi-
cation may not be effective is when both sides use the same
words, but attribute different meaning to those words. Here,
the word gerrymandering is used by both mathematicians as
well as the legal community. The legal community understands
gerrymandering only as it is defined by the Supreme Court.
The Supreme Court has stated that partisan gerrymandering
is unconstitutional. The question is not constitutionality. The
question is whether there is a judicially manageable standard for
measuring when partisan unfairness has reached “an extremity
of unfairness”

To understand if CFP is a rule or standard that the court
wishes to adopt, we must first have a very clear understanding
of the rule. At first blush, it appears that CFP are claiming that
they have devised an outlier test that is similar to what could
be achieved with a mixed MCMC chain. The only seeming
difference is that since their Markov chain is not required to
mix, they do not assess whether an observation is an outlier
from observing its location in the sample distribution. Instead,
they provide a test where a p-value can be assigned to an outlier
hypothesis without a mixed chain and without a sample of the
underlying distribution. Though both a mixed MCMC chain
and CFP present ways to define an “outlier test,” these two outlier
tests are in fact distinct and quite different from one another.

An outlier test from a mixed MCMC chain allows us to make
statements about whether a particular unit is a global outlier in
the space of all feasible redistricting maps. That is, given the
distribution of all possible partisan metrics, a particular value
lies in the tail of the distribution. However, an e-outlier, as CFP
have defined it, can lie anywhere in the distribution. An ¢-outlier
is not a global outlier, as we traditionally understand global
outliers.

It appears that CFP wish to use their theorem to attribute a
different “global phenomenon” to their ¢-outliers. In particular,

their theorem is based on the idea that, in the global space,
there cannot be a large proportion of local outliers. “The /¢
test is based on the fact that no reversible Markov chain can
have too many local outliers (CFP, p. 2861).” Note that this is
an important, legally distinct, and nontraditional definition of a
“global outlier” While one might define an outlier in this fash-
ion, CFPs definition choice is subtle and not transparent. This
is a crucial point because whether or how the CFP definitions
might serve as the basis for a legal standard is a separate question
from the correctness of the mathematical foundations of the
CFP theorem.

Determining the appropriateness of the CFP test in the legal
realm requires both a nuanced understanding of the properties
of an e-outlier as well as a nuanced understanding of the law.
CFP wish to argue that maps that are ¢-outliers are “carefully
crafted, meaning that the map drawer could have chosen a
large number of other maps that are very similar to the current
map, but chose not to for partisan reasons. The Court has
never proposed this “carefully crafted” phenomenon as partisan
gerrymandering and has not evaluated whether it would accept
this argument if only some unknown portion of the set of all
maps has been examined. It may accept this argument, but
(1) this test does not emanate from case law, and (2) for the
Court to properly evaluate it, legal scholars must appropriately
understand the CFP test.

What the CFP test precisely identifies is not clear unless one
has a reasonably deep understanding of mathematics. Realizing
whether the CFP test is consistent with the Supreme Court’s legal
framework requires a reasonably deep understanding of the law.
Though both disciplines are deeply enshrouded in logic, they
use different languages, and so special care must be exercised to
avoid miscommunication.
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