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In this article, we formulate an information theoretic approach to informa-
tion recovery for a network flow transportation problem as an ill-posed
inverse problem and use nonparametric information theoretic methods to
recover the unknown adaptive-intelligent behaviour traffic flows. We
indicate how, in general, information theoretic methods may provide a
solution to the ill-posed inverse information flow problems, when a
function must be inferred from insufficient sample information. As an
application, we examine a data set which comprised traffic volumes at
Bell Labs.
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I. Network Tomography

In a communication network, the efficiency of infor-
mation flow in a network is predicated on designing
protocols that efficiently identifies adaptive-intelli-
gent behaviour (Wissner-Gross and Freer, 2013) and
routes information. In a transportation network, the
principles are no different and the emphasis is on
design and efficiency in routing. Roads that are
heavily used should be designed differently than
less-often used roads, and traffic should be routed
according to this design in infrastructure. In this
article, we use information theoretic methods to ana-
lyse the problem of identifying the connection
between adaptive behaviour and the entropy maxi-
mization principle and determining point-to-point
traffic between subnetworks when only aggregate

traffic volumes are known. This is a common pro-
blem because while point-to-point traffic informa-
tion can be collected, in practice, doing so is
sufficiently burdensome that such collection is not
routine or typical. Instead, the usual data collection
includes only aggregate information on traffic
volumes.
The problem of estimating traffic volumes from

aggregate link traffic measurements was first dis-
cussed in this journal by Vardi (1996). He used the
term network tomography to describe a class of
statistical inverse problems, and Castro et al.
(2004) gave a useful discussion of the statistical
implications of this new field. In a recent issue of
this journal, Airoldi and Blocker (2013) considered
this type of an ill-posed inverse problem and sug-
gested a number of statistical models for information
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recovery. Building on this productive work, to avoid
calibration, tuning parameters, regularization,
pseudo likelihoods and two-stage inference methods,
we propose an alternative structure of the direct for-
mulation using information theoretic methods (see,
for example, Golan et al., 1996; Cho and Judge,
2008), where the information theoretic entropy solu-
tion to the inverse problem is described by the dis-
tributions of the unknown parameters.

II. The Network Inverse Problem

Point-to-point traffic volumes at any point in time, xt,
usually must be estimated from aggregate noisy traffic
volumes, yt, given information about the network
routing protocol in the form of a matrix A. The num-
ber of origin to destination routes in x is much larger
than the number of aggregate traffic measures in y, and
the estimation problem results in a series of noisy ill-
posed linear inverse problems, yt ¼ Axt þ et, where
et is a noise component (see Castro et al., 2004).
The transportation network problem is simple to

describe. We have aggregate traffic volumes mea-
sured at T points in time, yit, where t ¼ 1; . . . ; T
and i denotes the subnetwork. The routing protocol
matrix, A, encompasses the routing protocol, and
Aij ¼ 1 if the point-to-point traffic at subnetwork i
contributes to counter j; A ij ¼ 0 otherwise. The net-
work may be expressed by the relationship,

yit ¼
Xn
j¼1

A ij xjt (1)

where at any one point in time,

yi ¼
Xn
j¼1

A ij xj (2)

If we let N ¼Pn
j¼1 xj be the total traffic at each

subnetwork, then

yi
N

¼ 1

N

Xn
j¼1

A ij xj (3)

If we now let ri ¼ yi
N

and pj ¼ xj
N
; then

ri ¼
Xn
j¼1

Aij pj (4)

where
Pn

j¼1 pj ¼ 1, and xj and N are unknown.
Note that we need to compute N in some way that
does not entail knowing the values of x. In our
application later, a peculiarity of the data will enable
us to compute N from the following known informa-
tion in y.

ri ¼ yi
N

i ¼ 1; 2; . . . ;m (5)

pj ¼ xj
N

j ¼ 1; 2; . . . ; n (6)

At any point in time, there aremþ 1 constraints in
this problem. There is an additivity constraint,

Xn
j¼1

pj ¼ 1 (7)

as well as m other constraints,

ri ¼
Xn
j¼1

A ij pj i ¼ 1; 2; . . . ;m (8)

This general problem captures a frequently occur-
ring problem where a function must be inferred from
insufficient information that specifies only a feasible
set of functions, or solutions. The problem is
fundamentally underdetermined and indeterminate
because there are more unknowns than data points
on which to base a solution. Thus, insufficient sam-
ple information exists to solve the problem using
traditional rules of logic.

III. An Information Theoretic Estimation
and Inference Base

To implement the model, we must determine how to
represent the linkage to the data and how to choose
the criterion or objective function. Because of the ill-
posed nature of the inverse problem, traditional for-
ward estimation methods cannot be used to recover
the unknown pj. Given the connection between adap-
tive behaviour and entropy maximization, to avoid
adding creative assumptions and extraneous infor-
mation that the researcher usually does not possess,
we make use of the information theory methods that
are designed to handle problems of this nature
(Wissner-Gross and Freer, 2013). In this context the
Cressie–Read (CR) (1984, 1988) family of
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likelihoods-entropy functionals provides one basis
for linking the data to the unknown model para-
meters and exploiting the statistical machinery of
information theory.

The CR family of power divergence measures

Since we are treating this as an ill-posed inverse pro-
blem with noise and the unknown pj are discrete ran-
dom variables, we begin with the CR (Cressie and
Read, 1984; Read and Cressie, 1988) multi-parametric
family of goodness of fit-power divergence measures,

I p ; q ; γð Þ ¼ 1

γðγþ 1Þ
Xn
i¼1

pi
pi
qi

� �γ

� 1

� �
(9)

In Equation 9, γ is a parameter that indexes mem-
bers of the CR family, pis represent the subject prob-
abilities, and the qis are interpreted as reference
probabilities. The usual probability distribution char-
acteristics, pi; qi 2 ½0; 1�;"i, Pn

i¼1 pi ¼ 1 andPn
i¼1 qi ¼ 1, are assumed to hold. The pjs are ran-

dom vectors with an unknown underlying parame-
terized distribution, and are assumed to be
independent of each other.
The CR family of power divergences is defined

through a class of additive convex functions and the
CR power divergence measure encompasses a broad
family of test statistics and leads to a broad family of
likelihood functionswithin a moments-based estima-
tion context. In the context of extremum metrics,
maximum likelihood is embedded in the general
CR (1984) family of power divergence statistics.
Thus, this family represents a flexible set of
pseudo-distance measures from which to derive
empirical probabilities associated with the indirect
data. As γ varies, the resulting CR family of estima-
tors that minimize power divergence exhibit qualita-
tively different sampling behaviour. This class of
estimation procedures is referred to as Minimum
Power Divergence (MPD) estimation (Gorban
et al., 2010; Judge and Mittelhammer, 2011, 2012).
If in Equation 9, we let γ ! 0, and the reference

distribution, qi, be the uniform distribution, the CR
distance measure yields the Shannon (1948, 1949)/
Jaynes (1957) entropy criterion,

� HðYÞ ¼ p1 log p1 þ � � � þ pn log pn

¼ �
X
j

pj ln ðpjÞ (10)

Under the Shannon and Jaynes maximum entropy
estimation criterion, the pure inverse model may be
formulated as

arg min
pj

Xn
j¼1

pj ln ðpjÞ (11)

subject to the relevant problem constraints. In this
way, the problem is stated as a constrained minimi-
zation problem that minimizes the distance between
the estimated pi and qi ¼ n�1, a uniform reference
distribution. Depending on the degree of external
knowledge base, other fixed or random qi may
serve as the reference distribution.
The resulting Lagrangian function for the con-

strained maximization problem is

L ¼ �
Xn
j¼1

pj ln pj � ðλ0 � 1Þ
Xn
j¼1

ðpj � 1Þ

�
Xm
i¼1

λi
Xn
j¼1

ð A ij pj � riÞ
(12)

where the Lagrange multipliers are λ0 � 1;
λ1; . . . ; λm. Note that we use λ0 � 1 instead of λ0 for
mathematical convenience. Taking the derivative
yields a solution for the probabilities, pj, in terms of
the Lagrange multipliers.

@L

@pj
¼ � ln pj � λ0 �

Xm
i¼1

λi A ij ¼ 0 (13)

� ln pj ¼ λ0 þ
Xm
i¼1

λi A ij (14)

ln pj ¼ �λ0 �
Xm
i¼1

λi A ij (15)

pj ¼ exp �λ0 �
Xm
i¼1

λiAij

 !
j ¼ 1; 2; . . . ; n

(16)

We substitute pj from Equation 16 into con-
straints (7) and (8), to determine λ0; λ1; . . . ; λm. We
also substitute pj into Equation 12 to eliminate the
constraints and produce a strictly convex function to
maximize
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L ¼ ln
Xn
j¼1

exp �
Xm
i¼1

λi A ij

 ! !
þ
Xm
i¼1

λiri

(17)

In general, this solution does not have a closed-
form expression, and the optimal values of the
unknown parameters must be numerically
determined.

IV. An Empirical Application

Given the general transportation network problem
formulated in Section II, as an empirical applica-
tion, we examine a data set that comprised traffic
volumes at Bell Labs (Cao et al., 2000). The
router and subnetworks set-up is depicted in
Fig. 1. Aggregate traffic volumes are measured
every 5 min over the course of 1 day on the Bell
Labs network. In all, we have 287 sets of mea-
surements in time.
These data include seven independent measures of

aggregate adaptive behaviour traffic volume, which
results in seven constraints in the form of

X7
j¼1

pj ¼ 1 (18)

and an additivity constraint,

ri ¼
X7
j¼1

A ijpj i ¼ 1; 2; . . . ; 16 (19)

where

ri ¼ yi
N

i ¼ 1; 2; . . . ; 16 (20)

pj ¼ xj
N

j ¼ 1; 2; . . . ; 7 (21)

The following 7� 16 matrix encodes the routing
protocol:

A ¼
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

2
66666666666664

3
77777777777775

(22)

The resulting Lagrangian for this particular
problem is

L ¼ ln
X16
j¼1

exp �
X7
i¼1

λi A ij

 ! !
þ
X7
i¼1

λiri

(23)

Empirical results

Using a noninformative uniform prior, the solution
to this problem in each of 287 separate measure-
ments in time has a small mean error across the 16
unknown point-to-point traffic volumes, x. The
mean error across the 16 measures is essentially
zero (to at least 10 decimals places of accuracy).
This result is not surprising given that it is incor-
porated into the constraints for the problem. The
individual point-to-point traffic volumes are not as
close.
We obtain our estimates with a noninformative

prior. However, we can see from the summary
statistics of the variables that we are trying to
estimate that some of the origin-destination pairs
lead to adaptive behaviour that shoulders a large
portion of the overall traffic burden while others
do not. The first origin–destination pair, for
example, has no traffic on any of the 287 mea-
surements in time. The last origin–destination
pair has almost no traffic. On the other hand, the
3rd, 6th, 7th, 8th, 9th and 14th origin–destination
pairs shoulder quite a bit of traffic.Fig. 1. Bell Labs network
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The data pattern is peculiar but akin to a pattern we
might surmise to characterize network/behaviour
flow data. It is easy to understand why traffic might
be near zero for parts of the day and higher during
working hours. Traffic spikes but then are diverted,
preventing spikes that overburden any part of the
system. Our prior with the data was a noninforma-
tive, uniform prior, which would not be like the
pattern just described. Given that we have some
information on the characteristics of the system, we
can improve our individual estimates with a more
informative prior.

V. Conclusion

In network information flow problems, there is
often only origin and destination data. The number
of data points, thus, is smaller than the number of
parameters that need to be estimated. To identify
the unknown underlying adaptive behaviour and to
measure causal influence requires one to solve a
stochastic inverse problem. The resulting under-
determined inverse problem cannot be solved by
traditional estimation and inference methods with-
out imposing a large number of assumptions. A
natural solution is to employ information theoretic
estimation and inference methods that are designed
for problems of this nature. We have demonstrated
the applicability of information theoretic methods
to information flow-traffic problems. As a first
attempt from the CR family, we have made use
of the well-known maximum likelihood entropy,
γ ! 0, criterion.
One of our important contributions here is a

demonstration of the connection between adaptive
behaviour and likelihood or entropy maximization

and the use of the CR family of entropy measures
for analysing networks. Future research involves
exhibiting the performance of other members of the
CR family that may reflect particular characteristics
of the network flow traffic data and making use of
the empirical likelihood, γ ! �1 or perhaps other
nonexponential criterion that makes use of convex
combinations of members of the CR family.
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